2.将函数平移后得到的图象对应的函数解析式是
( )
A. B.
C. D.
1.已知集合 ( )
A.(0,2) B.[-1,1] C.(0,1 D.[-1,2
22.(本小题满分14分)已知数列满足
(1)求数列的通项公式;
(2)设b= (n∈N,n≥2), b,
求证:b1+b2……+bn< 3;
(3)设点M(n,b)((n∈N,n>2)在这些点中是否存在两个不同的点同时在函数
y =(k>0)的图象上,如果存在,求出点的坐标,若不存在,请说明理由.
21.(本小题满分12分)已知F1、F2是椭圆的左、右焦点,O为坐标原点,点P)在椭圆上,线段PF2与y轴的交点M满足;
(1)求椭圆的标准方程;
(2)⊙O是以F1F2为直径的圆,一直线l: y=kx+m与⊙O相切,并与椭圆交于不同的两点A、B. 当,且满足时,求△AOB面积S的取值范围.
20.(本小题满分12分)已知函数f (x) =lnx,g(x) =,(a为常数),若直线l与y =f(x), y =g(x)的图象都相切,且l与y = f(x)的图象相切的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当 –2 ≤m <时,求在[,2]上的最大值.
19.(本小题满分12分)如图,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点.
(1)求与平面A1C1CA所成角的大小;
(2)求二面角B-A1D-A的大小;
(3)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定其位置并证明结论;若不存在,说明理由.
18.(本小题满分12分)某工厂组织工人参加上岗测试,每位测试者最多有三次机会,一旦某次测试通过,便可上岗工作,不再参加以后的测试;否则就一直测试到第三次为止。设每位工人每次测试通过的概率依次为0.2,0.5,0.5.
(1)若有4位工人参加这次测试,求恰有2人通过测试的概率;
(2)求工人甲在这次上岗测试中参加考试次数的分布列及E.
文字说明,证明过程或演算步骤)
17.(本小题满分12分)已知,,函数.
(1)求的单调递增区间;
(2)若,,求cosx的值.
16.如图,矩形ABCD中,DC=,AD=1,在DC上截取DE=1,将△ADE沿AE翻折到D1点,点D1在平面ABC上的射影落在AC上时,二面角D1-AE-B的平面角的余弦值是 .
15.两个三口之家,拟乘两艘小游艇一起水上游,每艘游艇最多只能坐4个人,其中两个小孩(另4个为两对夫妇)不能独坐一艘游艇,则不同的乘坐方法共有__________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com