20.(本小题满分13分)
若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.
(I)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;
(II)试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.
19.(本小题满分13分)
在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C.
(I)求该船的行驶速度(单位:海里/时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
18.(本小题满分12分)
数列
(Ⅰ)求并求数列的通项公式;
(Ⅱ)设证明:当
17.(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
16.(本小题满分12分)
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:
(Ⅰ)至少有1人面试合格的概率;
(Ⅱ)签约人数的分布列和数学期望.
15.对有n(n≥4)个元素的总体{1,2,3,…,n}进行抽样,先将总体分成两个子总体
{1,2,…,m}和{m+1、m+2,…,n}(m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组成样本,用Pij表示元素i和j同时出现在样本中的概率,则Pij=
;所有Pij(1≤i<j≤的和等于 .
14.已知函数f(x)=
(1)若a>1,则f(x)的定义域是 ;
(2)若f(x)在区间上是减函数,则实数a的取值范围是 .
13.设函数y=f(x)存在反函数y=f-1(x),且函数y=x-f(x)的图象过点(1,2).
则函数的图象一定过点 .
12.已知椭圆(a>b>0)的右焦点为F, 右准线为l, 离心率e=过顶点A(0,b)作AMl, 垂足为M,则直线FM的斜率等于 .
11. .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com