解:(1)设椭圆的半长轴、半短轴及半焦距依次为a、b、c,则a2=m,b2=m-1,c2=a2-b2=1
∴椭圆的焦点为F1(-1,0),F2(1,0).
59、(2009届高考数学快速提升成绩题型训练)如图,已知椭圆=1(2≤m≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A、B、C、D,设f(m)=||AB|-|CD||
(1)求f(m)的解析式;
(2)求f(m)的最值.
圆心k到抛物线准线距离d=x0+≤a,而圆k半径R=≥a.
且上两式不能同时取等号,故圆k必与准线相交.
∴0≤x0≤.
∴y1y2≤0,因此y02-a2≤0,即2ax0-a2≤0.
∴|MN|=2=
∴弦MN的长不随圆心k的运动而变化.
(2)设M(0,y1)、N(0,y2)在圆k:(x-x0)2+(y-y0)2=x02+a2中,
令x=0,得y2-2y0y+y02-a2=0
∴y1y2=y02-a2
∵|OA|是|OM|与|ON|的等差中项.
∴|OM|+|ON|=|y1|+|y2|=2|OA|=
又|MN|=|y1-y2|=
∴|y1|+|y2|=|y1-y2|
圆k的半径R=|AK|=
58、(2009届高考数学快速提升成绩题型训练)已知圆k过定点A(a,0)(a>0),圆心k在抛物线C:y2=2ax上运动,MN为圆k在y轴上截得的弦.
(1)试问MN的长是否随圆心k的运动而变化?
(2)当|OA|是|OM|与|ON|的等差中项时,抛物线C的准线与圆k有怎样的位置关系?
解:(1)设圆心k(x0,y0),且y02=2ax0,
综合上述,对于任意一点,总存在角使等式:成立.
若,则存在角使等式成立;若由与于是用代换,同样证得存在角使等式:成立.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com