即为P点到面ABCD的距离。
(2)由已知ABCD为菱形,及△PAD为边长为2的正三角形
∴PA=AB=2,又易证PB⊥BC
故取PB中点G,PC中点F
则AG⊥PB,GF∥BC
又BC⊥PB,∴GF⊥PB
∴∠AGF为面APB与面CPB所成的平面角
∵GF∥BC∥AD,∴∠AGF=π-∠GAE
连结GE,易证AE⊥平面POB
∵AD⊥PB,∴AD⊥OB(根据___________)
∵PA=PD,∴OA=OD
于是OB平分AD,点E为AD中点
∴PE⊥AD
∴∠PEB为面PAD与面ABCD所成二面角的平面角
∴∠PEB=120°,∠PEO=60°
解:(1)作PO⊥平面ABCD,垂足为O,连结OB、OA、OD,OB与AD交于点E,连结PE
71、(2009届高考数学快速提升成绩题型训练)如图,已知四棱锥P―ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°。
(1)求点P到平面ABCD的距离;
(2)求面APB与面CPB所成二面角的大小。
∴∠MEO=60°
即二面角M―NQ―P的大小为60°。
即四面体M―NPQ的体积与正方体的体积之比为1:6
(3)连结MA交PQ于O点,则MO⊥PQ
又NP⊥面PAQM,∴NP⊥MO,则MO⊥面PNQ
过O作OE⊥NQ,连结ME,则ME⊥NQ
∴∠MEO为二面角M―NQ―P的平面角
在Rt△NMQ中,ME?NQ=MN?MQ
设正方体的棱长为a
∵PQ∥NC,又△MNC为正三角形
∴∠MNC=60°
∴PQ与MN成角为60°
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com