0  196058  196066  196072  196076  196082  196084  196088  196094  196096  196102  196108  196112  196114  196118  196124  196126  196132  196136  196138  196142  196144  196148  196150  196152  196153  196154  196156  196157  196158  196160  196162  196166  196168  196172  196174  196178  196184  196186  196192  196196  196198  196202  196208  196214  196216  196222  196226  196228  196234  196238  196244  196252  447090 

本节主要学了磁场对通电导体的作用,电动机的基本构造,生活中的电动机,结合投影与学生们小结.

试题详情

(三)生活中的电动机         [板书]

[生甲]电动机工作实质是电能转化为机械能.

[生乙]电动机优点:构造简单、控制方便、体积小、效率高、功率可大可小、无污染.

[师]这节课大家表现非常的好,我们把这节课内容进行小结.

试题详情

(二)电动机的基本构造    [板书]

[生甲]电动机由两部分组成:转子和定子.

[生乙]电动机里,能够转动的部分叫转子,固定不动的部分叫定子.

[师]在上面探究活动中,我们使线圈转起来了.如果把“小小电动机”线圈两端引线的漆皮全部刮掉,线圈又会怎样运动呢?

[生甲]接通电源,线圈在磁场里发生转动,但转动不能持续下去,转90°角摆几下就停了.

[师]怎么解释这一现象呢?看演示.

[演示]如图8.4-5,使线圈位于磁体两磁极间的磁场中.

1.使线圈静止在图乙位置上,闭合开关,观察.

[生]发现线圈没有运动.

[师]这是由于线圈abcd两个边受力大小一样,方向相反的原因,这个位置是线圈的平衡位置.

2.使线圈静止在图甲位置上,闭合开关观察.

[生甲]线圈受力沿顺时针方向转动.

[生乙]可是线圈能靠惯性越过平衡位置,但不能继续转下去,最后要返回平衡位置.

[生丙]为什么会返回呢?

[师]看图丙,使线圈静止在这个位置上,这是刚才线圈冲过平衡位置以后所到达的地方,闭合开关,观察.

[生甲]线圈向逆时针方向转动.

[生乙]这说明线圈在这个位置所受力是阻碍它沿顺时针方向转动的,这也就使线圈返回平衡位置.

[生丙]那我们在探究实验中,线圈为什么能连续转动呢?

[生丁]因为小小电动机两根引线,一根刮去半周,一根刮去一周,而线圈没刮半周,是都接在电路里,刮去半周的只有刮去的部分接入电路里.

[生戊]刮去半周有什么作用?

[生己]刮去的通电,没刮去的绝缘,不通电.

[生辛]当线圈转过平衡位置,如果供电,线圈就受到阻碍它沿原来方向转动的力.如果不供电线圈由于惯性会继续转动,小小电动机就是利用这个原理工作的.

[师]在“小小电动机”中我们只利用了一半的电力,也就是线圈每转一周,只有半周获得动力.如果设法改变后半周电流的方向,使线圈在后半周也获得动力,线圈将会更平稳、更有力地转动下去.实际的直流电动机是通过换向器来实现这项功能,看屏幕(微机内容为换向器的构造、作用)

[生甲]换向器的构造,两个铜半环EF跟线圈两端相连,它们彼此绝缘,并随线圈一起转动.

[生乙]AB是电刷,它们跟半环接触,使电源和线圈组成闭合电路.线圈转动时,它通过换向器使电流方向发生改变,使线圈的受力方向总是相同,线圈就可以不停地转动下去了.

[生丙]换向器的作用:当线圈刚刚转过平衡位置时,换向器能自动改变线圈中电流的方向,从而改变线圈受力方向,使线圈连续转动.

[师]实际的直流电动机都有多个线圈,每个线圈都接在一对换向片上.除直流电动机外,生活中还经常用到交流电动机,交流电动机也是利用通电导体在磁场中受力来运转的.我们看课本生活中的电动机,从这段你知道了什么?

试题详情

(一)磁场对通电导线的作用   [板书]

[演示]如图8.4-1,把导线ab放在磁场里,接通电源, 让电流通过导线ab,观察它的运动,说出观察到的现象,讨论得出它的结论.

[生甲]接通电源,导线ab向外(或向里)运动.

[生乙](讨论得出)通电导体在磁场中受到力的作用.

1.通电导体在磁场中受到力的作用.[板书]

[师]把电源的正负极对调后接入电路,使通过导线ab的电流方向与原来相反,观察导线ab的运动方向.

[生甲]合上开关,导线ab向里(或向外)运动,与刚才运动方向相反.

[生乙]这说明通电导体在磁场中受到的力的方向与电流通过导体的方向有关.

[师]保持导线ab中的电流方向不变,但把蹄形磁体上下磁极调换一下,使磁场方向与原来相反,观察导线ab的运动方向.

[生甲]磁极调换后观察到导线ab的运动方向改变.

[生乙]这表明通电导体在磁场中运动方向与磁感线方向有关.

教师边说边板书

2.通电导体在磁场中受力的方向,跟电流方向和磁感线方向有关   [板书]

[师]当电流方向或者磁感线方向变的相反时,通电导体受力方向也变的相反.那么,把一个通电的线框放到磁场中,它会怎样运动?

[生甲]通电线圈在磁场中旋转.

[生乙]通电线圈在磁场中转动90°,摆动后静止.

[师]那么我们能不能让它不停地转动?想一想,做做看.

[探究]让线圈转动起来.

教师巡迴检查,学生分组制作.

[生甲]我们组是先把漆包线在火柴盒等模子上绕了一个圈(不必绕的太多).把两个引出端用胶带固定在线圈上,使两端引线在一条直线上.用小刀刮去两端引线的漆皮,不过注意一端全部刮掉(可以用砂纸打),另一端只刮去半圈,这样线圈就做成了.

[生乙]我们组是剪两段直径约1 mm,长度约100 mm的相同的铜丝,上端弯成Z字形,下端与导线相连并用图钉固定在硬纸板(或木板)上,与线圈相连的端点要大致保持在同一水平面上,这样支架就做成了.

[生丙]把线圈放在支架上,磁铁放在线圈下方,通电调整磁铁位置,使磁铁与线圈尽量靠近,但又不能相互接触,并用手轻推线圈,线圈就不停地转动起来.

[生丁]我们组的线圈不停地转动起来后,我们改变电流方向,发现线圈转动方向也发生改变.

[生戊]我们组是线圈不停地转动起来后,改变磁极极性,发现线圈转动方向也发生改变.

[师]经过大家的努力,我们做出一台小小电动机,那么电动机的基本构造是什么样的?看投影.

试题详情

1.磁场的基本性质是什么?

(磁场对放入其中的磁体产生力的作用)

2.电流的磁效应是什么?

(通电导体周围存在着磁场,磁场的方向跟电流的方向有关,这种情况叫做电流的磁效应)

[演示]直流电动机通电转动.

[师]电动机为什么会转呢?

(引导学生回忆奥斯特实验,知道通电导体周围存在磁场,能使小磁针偏转,即电流对磁体有力的作用,启发学生逆向思维)

[师]磁场对电流有没有力的作用呢?

[生甲]磁场对电流不一定有力的作用.

[生乙]磁场对电流应该有力的作用,这样电动机才会转动.

[师]哪位同学回答的正确?我们知道生产和生活中的许多电器都需要电动机来带动,电动机已经深入到现代社会生产生活的各个角落,下面我们就来研究电动机的工作原理,来获得正确的答案.

第四节  电动机       [板书]

试题详情

1.5课时

●教学过程

试题详情

2.理解通电线圈在磁场里为什么会转动.

●教学方法

实验法、启发式、演示法.

●教具准备

电源、蹄形磁体、开关、导线、铜棒(导体)、滑动变阻器、线圈、导轨、投影、微机.

●课时安排

试题详情

通过了解物理知识如何转化成实际技术应用,进一步提高学生学习科学技术知识的兴趣.

●教学重点

磁场对电流的作用.

●教学难点

1.分析概括通电导体在磁场中的受力方向跟哪两个因素有关.

试题详情

2.通过制作模拟电动机的过程,锻炼学生的动手能力.

试题详情

1.通过演示,提高学生分析概括物理规律的能力.

试题详情


同步练习册答案