3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。
教学过程:
引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。实际上,利用公理及其推导出的定理,我们能够证明勾股定理。
定理:直角三角形两条直角边的平方和等于斜边的平方。
如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,
延长CB至点D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE,则△ABC≌△BED。
∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等)。
∴四边形ACDE是直角梯形。
∴S梯形ACDE =(a+b)(a-b)= (a+b)2
∴∠ABE=180°-∠ABC-∠EBD=180°- 90°=90°
AB=BE
∴S△ABC = c2
∵S梯形ACDE = S△ABE +S△ABC+ S△BED ,
∴(a+b)2=c2+ab+ab 即a2+ab+b2=c2+ab+ab
∴a2+b2=c2
反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?
已知:如图,在△ABC,AB2+AC2=BC2,求证:△ABC是直角三角形。
证明:作出Rt△A’B’C’,使∠A=90°,A’B’=AB,A’C’=AC,则
A’B’2+A’C’2=B’C’2 (勾股定理)
∵AB2+AC2=BC2 ,A’B’=AB,A’C’=AC,
∴BC2= B’C’2
∴BC=B’C’
∴△ABC≌△A’B’C’ (SSS)
∴∠A=∠A’=90°(全等三角形的对应角相等)
因此,△ABC是直角三角形。
定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为另一个命题的互逆命题,其中一个命题称为另一个命题的逆命题。
一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理。这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
练习题:随堂作业
作业:P20:1、2、3
2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。
1、进一步掌握推理证明的方法,发展演绎推理能力。
3、预习作业:P21-22页 做一做
板书设计:
|
课后记:
2、拓展作业:《目标检测》
1、基础作业:P20页习题1.4 1、2、3。
6、课堂小结:本节课你都掌握了哪些内容?
(引导学生归纳总结,互逆定理的定义及相互间的关系。)
4、练习:
(1) 写出命题“如果有两个有理数相等,那么它们的平方相等”的逆命题,并判断是否是真命题。
(2) 试着举出一些其它的例子。
(3) 随堂练习 1
3、关于互逆命题和互逆定理。
(1)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
(2)一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
(引导学生理解掌握互逆命题的定义。)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com