3.(1)Ôʽ=5x2-58x-24£»¡¡¡¡¡¡¡¡¡¡ (2)Ôʽ=x2+2xy+y2-1£»
(3)Ôʽ=4x2+y2+9-4xy-12x+6y£»¡¡¡¡ ¡¡¡¡ (4)Ôʽ=x4-8x2+16.
2.(1)Ôʽ=4a2+20ab+25b2£»¡¡ ¡¡¡¡ (2)Ôʽ=16x2-24xy+9y2£»
(3)Ôʽ=4m2+4m+1£»¡¡¡¡¡¡¡¡¡¡¡¡¡¡ (4)Ôʽ=a2-2ab+b2£»
(5)Ôʽ=3969£»¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ (6)Ôʽ=9604.
1.(1)Ôʽ=x2-y2£»¡¡ (2)Ôʽ=x2y2-1£»¡¡ (3)Ôʽ=4a2-9b2£»
(4)Ôʽ=25-4b2£»¡¡¡¡ (5)Ôʽ=3999999£» (6)Ôʽ=999996.
2.Ò»¶¨ÒªÕÆÎÕ¹«Ê½µÄ½á¹¹ÌØÕ÷ºÍ×Öĸ±íʾÊýµÄ¹ã·ºÒâÒ壬ͨ¹ýѧϰ´ïµ½Äܹ»ÊìÁ·¡¢Áé»îµØÔËÓó˷¨¹«Ê½µÄ³Ì¶È.
Ï°ÌâÑ¡½â¡¡ ¿Î±¾Ï°Ìâ
¿Î±¾µÚ184-185Ò³
Ï°Ìâ15.3
1.±¾½ÚÖ÷ҪѧϰÁË£º
(1)Õûʽ³Ë·¨µÄƽ·½²î¹«Ê½(a+b)(a-b)=a2-b2£»
(2)Õûʽ³Ë·¨µÄÍêȫƽ·½¹«Ê½(a¡Àb)2=a2¡À2ab+b2.
4.ÖصãÓëÄѵ㣺ÖصãÊÇÕÆÎÕ¹«Ê½(a+b)(a-b)=a2-b2,(a¡Àb)2=a2¡À2ab+b2.ÄѵãÊǹ«Ê½ÖÐ×ÖĸµÄ¹ã·ºº¬Òå.
½Ì²Ä½â¶Á¡¡ ¾«»ªÒªÒå
ÊýѧÓëÉú»î
Èçͼ15£16Ëùʾ£¬±ß³¤ÎªaµÄ´óÕý·½ÐÎÖÐÓÐÒ»¸ö±ß³¤ÎªbµÄСÕý·½ÐΣ¬
(1)Çë±íʾͼ15£16(1)ÖÐÒõÓ°²¿·ÖµÄÃæ»ý£»
(2)ijͬѧ½«ÒõÓ°²¿·ÖÆ´³ÉÁËÒ»¸ö³¤·½ÐΣ¬Èçͼ15£16(2)Ëùʾ£¬Õâ¸ö³¤·½Ðεij¤ºÍ¿í·Ö±ðÊǶàÉÙ£¿ÇëÄã±íʾ³öËüµÄÃæ»ý£¿
(3)±È½Ï(1)(2)µÄ½á¹û£¬ÄãÄÜ·¢ÏÖʲô£¿
˼¿¼ÌÖÂÛ¡¡ ÓÉͼ15£16(1)¿ÉÖª£¬ÒõÓ°²¿·ÖµÄÃæ»ýΪ(a2-b2)£¬ÓÉͼ15£16(2)¿ÉÖª£¬Æ´³É³¤·½Ðεij¤Îª(a+b),¿íΪ(a-b),ÆäÃæ»ýΪ(a+b)(a-b)£¬ÓÉÓÚͼ(2)ÊÇÓÉͼ(1)Æ´³ÉµÄ£¬¹ÊÁ½Í¼Ãæ»ýÏàµÈ£¬ËùÒÔÓÐ(a+b)(a-b)=a2-b2ÄÇôÈçºÎÖ¤Ã÷ÄØ£¿
֪ʶÏê½â
֪ʶµã1¡¡ ƽ·½²î¹«Ê½¼°Æäµ¼³ö
ƽ·½²î¹«Ê½ÊÇÖ¸(a+b)(a-b)=a2-b2.
Õâ¾ÍÊÇ˵£¬Á½¸öÊýµÄºÍÓëÕâÁ½¸öÊýµÄ²îµÄ»ýµÈÓÚÕâÁ½¸öÊýµÄƽ·½²î.
¿Î±¾Öб¾½ÚµÄ¿ªÊ¼ÊÇÏÈÈÃͬѧÃÇ×ö¼¸¸ö¶àÏîʽÏà³ËµÄСÌâ.
¾¹ý¼ÆË㣬ͬѧÃÇÊ×ÏÈ·¢ÏÖ£¬ËĸöСÌâËùµÃµ½µÄ½á¹ûÓоªÈ˵ÄÏà֮ͬ´¦£ºÃ¿¸öСÌâµÄ½á¹û¶¼Ö»º¬ÓÐÁ½Ï¶øÇÒ¶¼¿ÉÒÔд³ÉÁ½¸öÊýµÄƽ·½²îÐÎʽ.
Ϊʲô»áÓÐÕâЩÏà֮ͬ´¦ÄØ£¿Í¬Ñ§ÃÇ»áÏëµ½£¬ÕâÊÇÓÉÓÚÿ¸öСÌâÖеÄÁ½¸ö¶àÏîʽ¶¼Óзdz£ÌØÊâµÄ¹ØÁª£ºËüÃǵĵÚÒ»ÏÏàͬ£¬µÚ¶þÏîµÄ¾ø¶ÔÖµÏàͬ£¬µ«ÊÇ·ûºÅÏà·´.
¹éÄÉÀàËƵĶàÏîʽÏà³ËµÄʽ×Ó£¬¾ÍµÃµ½ÁËƽ·½²î¹«Ê½(a+b)(a-b)=a2-a2.
Ö±½Ó¼ÆËãÒ²¿ÉÒԵõ½Õâ¸ö¹«Ê½£º(a+b)(a-b)=a2-ab+ab-b2=a2-b2.
[×¢Òâ] a,b½ö½öÊÇÒ»¸ö·ûºÅ£¬ËüÃÇ¿ÉÒÔ±íʾÊý£¬Ò²¿ÉÒÔ±íʾʽ×Ó(µ¥Ïîʽ¡¢¶àÏîʽµÈ)£¬Ö»ÊÇËüÃǵĺÍÓë²îµÄ»ý£¬Ò»¶¨µÈÓÚËüÃǵÄƽ·½²î.
ÈÏʶ¹«Ê½µÄÌØÕ÷ÖÁ¹ØÖØÒª.
ƽ·½²î¹«Ê½µÄÌØÕ÷£º¹«Ê½µÄ×ó±ßÊÇÁ½¸öÊýµÄºÍ³ËÒÔÕâÁ½¸öÊýµÄ²î£¬¶ø¹«Ê½µÄÓÒ±ßÇ¡ºÃÊÇÕâÁ½¸öÊýµÄƽ·½²î.
֪ʶ¹æÂÉС½á¡¡ (1)ÔÚÓ¦Óù«Ê½(a+b)(a-b)=a2-b2ʱ£¬Ðè×Ðϸʶ±ð¹«Ê½ÖеÄaÓëb£¬ÀýÈ磺(2x+3)(2x-3)ÖУ¬°Ñ2x¿´³Éa£¬3¿´³Éb£»(-m+2n)(-m-2n)ÖУ¬°Ñ-m¿´³Éa£¬2n¿´³Éb£»(3a-2b)(-3a-2b)ÖÐ,°Ñ-2b¿´³Éa,3a¿´³Éb£¬Òò´ËÓУº
(2x+3)(2x-3)=(2x)2-32=4x2-9£»
(-m+2n)(-m-2n)=(-m)2-(2n)2=m2-4n2£»
(3a-2b)(-3a-2b)=(-2b)2-(3a)2=4b2-9a2.
(2)ÔÚ51¡Á49ÖУ¬a==50£¬b==1£¬
¡à51¡Á49=(50+1)(50-1)=502-12=2499.
֪ʶµã2¡¡ Íêȫƽ·½¹«Ê½¼°ÆäÍƵ¼
̽¾¿½»Á÷
¼ÆËãÏÂÁи÷ʽ£¬ÄãÄÜ·¢ÏÖʲô¹æÂÉ£¿
(1)(p+1)2=(p+1)(p+1)=¡¡¡¡¡¡ £»
(2)(m+2)2=¡¡¡¡ £»
(3)(p-1)2=(p-1)(p-1)=¡¡¡¡¡¡ £»
(4)(m-2)2=¡¡¡¡¡¡ .
µã²¦¡¡ Á½¸öÊýºÍ(»ò²î)µÄƽ·½£¬µÈÓÚÕâÁ½¸öÊýµÄƽ·½ºÍ¼ÓÉÏ(»ò¼õÈ¥)ÕâÁ½¸öÊý³Ë»ýµÄ2±¶.
Ò»°ãµØ£¬ÎÒÃÇÓУº
(a+b)2= a2+2ab+b2,(a-b)2=a2-2ab+b2.
Á½ÊýºÍ(»ò²î)µÄƽ·½£¬µÈÓÚËüÃǵÄƽ·½ºÍ£¬¼Ó(»ò¼õ)ËüÃǵĻýµÄ2±¶.ÕâÁ½¸ö¹«Ê½½Ð×ö(³Ë·¨µÄ)Íêȫƽ·½¹«Ê½.
ÀýÈ磺(2x+3)2=(2x)2+2¡¤2x¡¤3+32=4x2+12x+9£¬
(3m-4)2=(3m)2-2¡¤3m¡¤4+42=9m2-24m+16.
ÔÚ¼ÇÒ乫ʽ(a¡Àb)2=a2¡À2ab+b2ʱ£¬ÒªÔÚÀí½âºÍ±È½ÏµÄ»ù´¡ÉϼÇÒ䣬Á½¸ö¹«Ê½Ïà֮ͬ´¦ÔÚÓÚÁ½¸öÊýµÄƽ·½ºÍ£¬²»Í¬Ö®´¦ÔÚÓÚÖмäÏîµÄ·ûºÅ²»Í¬£¬¼ÆËãʱҪעÒâ.È磺(x-2y)2=x2-2¡¤x¡¤2y+(2y)2=x2-4xy+4y2.
˵Ã÷Íêȫƽ·½¹«Ê½£¬¼È¿ÉÒÔÓöàÏîʽ³Ë·¨½øÐÐÍƵ¼£º
(a+b)(a+b)=a¡¤a+a¡¤b+b¡¤a+b2= a2+2ab+b2.
ͬʱ£¬Ò²¿ÉÒÔÓù۲ìÇé¾³À´ÍƵ¼£¬Èçͼ15£17Ëùʾ.
ÓÉͼ(1)¿ÉÖª£¬(a+b)2=a2+2ab+b2£¬
ÓÉͼ(2)¿ÉÖª£¬(a-b)2=a2-2ab+b2.
֪ʶµã3¡¡ ÌíÀ¨ºÅ·¨Ôò
ÌíÀ¨ºÅʱ£¬Èç¹ûÀ¨ºÅÇ°ÃæÊÇÕýºÅ£¬À¨µ½À¨ºÅÀïµÄ¸÷Ï²»¸Ä±ä·ûºÅ£»
Èç¹ûÀ¨ºÅÇ°ÃæÊǸººÅ£¬À¨µ½À¨ºÅÀïµÄ¸÷Ï¸Ä±ä·ûºÅ.
[˵Ã÷] ÌíÀ¨ºÅ·¨ÔòÓëÈ¥À¨ºÅ·¨ÔòÊÇÒ»Öµģ¬ÌíÀ¨ºÅÕýÈ·Óë·ñ£¬¿ÉÓÃÈ¥À¨ºÅ½øÐмìÑé.
֪ʶµã4¡¡ ¹«Ê½(x+a)(x+b)=x2+(a+b)x+ab
¹«Ê½(x+a)(x+b)=x2+(a+b)x+abµÄÍƵ¼¿ÉÒÔÓöàÏîʽ³Ë·¨¹«Ê½×µµ¼.
(x+a)(x+b)
=x2+bx+ax+ab
=x2+(a+b)x+ab.
ÀýÈ磺(x+2)(x+3)=x2+(2+3)x+2¡Á3=x2+5x+6£¬
(x+2)(x-3)=x2+(2-3)x+2¡Á(-3)=x2-x-6.
[×¢Òâ]¡¡ ×¢ÒâaÓëbµÄÖµ£¬¸Ã¹«Ê½ÔÚ¶àÏîʽ³Ë·¨Öй㷺ӦÓÃ.
µäÀýÆÊÎö¡¡ ʦÉú»¥¶¯
»ù±¾ÖªÊ¶Ó¦ÓÃÌâ
±¾½Ú֪ʶµÄ»ù´¡Ó¦ÓÃÖ÷Òª°üÀ¨£º(1)»áÍƵ¼Æ½·½²î¹«Ê½£»(2)»áÍƵ¼Íêȫƽ·½¹«Ê½£¬²¢ÄÜÔËÓù«Ê½½øÐмòµ¥µÄ¼ÆË㣻(3)ÕÆÎÕ¹«Ê½(x+a)(x+b)=x2+(a+b)x+ab.
Àý1¡¡ ÔËÓÃƽ·½²î¹«Ê½¼ÆËã.
(1)(3x+2)(3x-2)£»(2)(b+2a)(2a-b)£»(3)(-x+2y)(-x-2y).
(·ÖÎö) (1)ÖУ¬°Ñ3x¿´×÷a£¬2¿´×÷b£»(2)ÖУ¬2 a¿´×÷a£¬b¿´×÷b£»(3)ÖУ¬-x¿´×÷ a£¬2y¿´×÷b.
½â£º(1)(3x+2)(3x-2)=(3x)2-22=9x2-4.
(2)(b+2a)(2a-b)=(2a)2-b2=4a2-b2.
(3)(-x+2y)(-x-2y)=(-x)2-(2y)2=x2-4y2
Àý2¡¡ ÔËÓÃÍêȫƽ·½¹«Ê½¼ÆËã.
(1)(4m+n)2£»¡¡ (2)(y-)2.
(·ÖÎö)¡¡ Ö÷ÒªÊÇÕýÈ·µØÓ¦Óù«Ê½.
½â£º(1)(4m+n)2=(4m)2+2¡¤4m¡¤n+n2=16m2+8mn+n2.
(2)(y-)2=y2-2y¡¤+()2=y2-y+.
[˵Ã÷] ÔÚÓ¦Óù«Ê½(a+b)(a-b)=a2-b2ºÍ(a¡Àb)2=a2¡À2ab+b2ʱ£¬¹Ø¼üÊÇ¿´ÇåÌâÄ¿ÖÐÄÄÒ»¸öÊǹ«Ê½ÖеÄa£¬ÄÄÒ»¸öÊǹ«Ê½ÖеÄb.
Àý3¡¡ ÔËÓó˷¨¹«Ê½¼ÆËã.
(1)102¡Á98£» (2)1022£» (3)992.
(·ÖÎö)Áé»îÓ¦Óó˷¨¹«Ê½¼ÆËã.(1)ÖУ¬102¡Á98=(100+2)(100-2)£»(2)ÖУ¬1022=(100+2)2£»(3)ÖУ¬992=(100-1)2£¬È»ºóÀûÓù«Ê½¼ÆËã¼´¿É.
½â£º(1)102¡Á98=(100+2)(100-2)=1002-22=10000-4=9996.
(2)1022=(100+2)2=1002+2¡Á100¡Á2+22=10000+400+4=10404.
(3)992=(100-1)2=1002-2¡Á100¡Á1+12=10000-200+1=9801.
Àý4¡¡ ¼ÆËã.
(1)(m-5)(m+3)£» (2)(2x-3)(2x-4).
(·ÖÎö)±¾ÌâÖ÷Òª¿¼²é¹«Ê½(x+a)(x+b)=x2+(a+b)x+abµÄÓ¦ÓÃ.
½â£º(1)(m-5)(m+3)
=m2+[(-5)+3]m+(-5)¡¤3
=m2-2m-15.
(2)(2x-3)(2x-4)
=(2x)2+[(-3)+(-4)]¡¤2x+(-3)¡¤(-4)
=4x2-14x+12.
×ÛºÏÓ¦ÓÃÌâ
±¾½Ú֪ʶµÄ×ÛºÏÓ¦ÓÃÖ÷Òª°üÀ¨£º(1)¹«Ê½Ö®¼äµÄ×ÛºÏÓ¦Óã»(2)Óë·½³ÌµÄ×ÛºÏÓ¦Óã»(3)Óë²»µÈʽµÄ×ÛºÏÓ¦ÓÃ.
Àý5¡¡ ¼ÆËã.
(1)(x+2y-3)(x-2y+3)£»¡¡ (2)(a+b+c)2£»
(3)(y+2)(y-2)-(y-1)(y+5).
(·ÖÎö) ±¾ÌâÖ÷Òª¿¼²éÁé»îÓ¦ÓÃÕûʽ³Ë·¨¹«Ê½½øÐмÆËã.(1)Ìâ°Ñx¿´×÷¹«Ê½ÖеÄa£¬(2y-3)¿´³É¹«Ê½ÖеÄb£»(2)Ìâ°Ñ(a+b)¿´³É¹«Ê½ÖеÄa£¬c¿´³É¹«Ê½ÖеÄb£»(3)ÌâÔËÓù«Ê½(x+a)(x+b)=x2+(a+b)x+ab.
½â£º(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]
=x2-(2y-3)2=x2-(4y2-12y+9)
=x2-4y2+12y-9.
(2)(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2
=a2+2ab+b2+2ac+2bc+c2.
(3)(y+2)(y-2)-(y-1)(y+5)=(y2-4)-(y2+4y-5)
=y2-4-y2-4y+5=-4y+1.
Àý6¡¡ ¼ÆËã.
(1)(b-2)(b2+4)(b+2)£»¡¡ (2)(2a-b)(2a+b)-(3a-2b)(3a+2b).
(·ÖÎö) (1)ÌâÓó˷¨µÄ½»»»ÂɺͽáºÏÂÉ£»(2)ÌâÓÃƽ·½²î¹«Ê½ºÍÕûʽ¼õ·¨.
½â£º(1)(b-2)(b2+4)(b+2)=(b-2)(b+2)(b2+4)
=(b2-4)(b2+4)=b4-16.
(2)(2a-b)(2a+b)-(3a-2b)(3a+2b)=(4a2-b2)-(9a2-4b2)
=4a2-b2-9a2+4b2=-5a2+3b2.
ѧÉú×öÒ»×ö¡¡ ¼ÆËã.
(1)(-x)(+x2)(x+)£»¡¡ (2)(x+3)2-(x+2)(x-2).
ÀÏʦÆÀÒ»ÆÀ¡¡ (1)Ôʽ=-x4£»¡¡ (2)Ôʽ=6x+13.
Àý7¡¡ ½â·½³Ì 2(x-2)+x2=(x+1)(x-1)+x
(·ÖÎö)¡¡ ÊìÁ·Ó¦ÓÃÕûʽµÄ³Ë·¨¹«Ê½.
½â£º2x-4+x2=x2-1+x£¬
2x+x2-x2-x=-1+4£¬
¡àx=3.
Àý8¡¡ ½â²»µÈʽx(x-3)£¾(x+7)(x-7).
(·ÖÎö)¿¼²éÓ¦ÓÃÕûʽ³Ë·¨¼°Æ½·½²î¹«Ê½È¥À¨ºÅ.
½â£ºx2-3x£¾x2-49£¬
x2-3x-x2£¾-49£¬
-3x£¾-49£¬
¡àx£¼.
̽Ë÷Óë´´ÐÂÌâ
Ö÷Òª¿¼²éÁé»îÓ¦ÓÃËùѧ¹«Ê½½â¾öÏÖʵÎÊÌâ.
Àý9¡¡ ¼ÆËã19982-1997¡Á1999.
(·ÖÎö)ͬʱӦÓÃÍêȫƽ·½¹«Ê½ºÍƽ·½²î¹«Ê½»¯¼ò£¬ÆäÖУ¬1997¡Á1999=(1998-1)(1998+1).
½â£º19982-1997¡Á1999
=19982-(1998-1)(1998+1)
=19982-(19982-1)
=19982-19982+1
=1.
ѧÉú×öÒ»×ö¡¡ ¼ÆËã.
ÀÏʦÆÀÒ»ÆÀ¡¡ Ôʽ=
=
=
=
=2003.
Àý10¡¡ ¼ÆËã(2+1)(22+1)(24+1)¡(22n+1).
(·ÖÎö)Òª¼ÆËã±¾Ì⣬һ°ãÏȼÆËãÿһ¸öÀ¨ºÅÄڵģ¬È»ºóÔÙÇóËüÃǵĻý£¬ÕâÑù×öÊǸ´Ôӵģ¬Ò²ÊDz»±ØÒªµÄ£¬ÎÒÃDz»·Á¿¼ÂÇÓÃƽ·½²î¹«Ê½À´½â¾ö£¬¼´ÔÚÔʽÉϳËÒÔ(2-1),ÔÙͬʱ³ýÒÔ(2-1)¼´¿É.
½â£ºÔʽ=
=(22-1)(22+1)(24+1)¡(22n+1)
=(24-1)(24+1)¡(22n+1)
=(22n)2-1
=24n-1.
ѧÉú×öÒ»×ö¡¡ ¼ÆËã.
(1)3¡¤(22+1)(24+1)¡(232+1)+1£»
(2)1002-992+982-972+962-952+¡+22-12£»
(3)(1-)(1-)(1-)¡(1-)(1-).
ÀÏʦÆÀÒ»ÆÀ¡¡ (1)ÓÉÀý10¿ÉÒԵõ½Ìáʾ.
(22+1)(24+1)¡(232+1)
=
=[(232)2-1]¡¤
=(264-1).
¡àÔʽ=3¡¤(264-1)+1=264-1+1=264.
(2)ÓÉƽ·½²î¹«Ê½ºÍµÈ²îÊýÁй«Ê½Sn=¿ÉÖª£¬
Ôʽ=(100+99)(100-99)+(98+97)(98-97)+(96+95)(96-95)+¡+(4+3)(4-3)+(2+1)(2-1)
=100+99+98+97+96+95+¡+4+3+2+1
=
=5050.
(3)ÓÉƽ·½²î¹«Ê½ºÍ·ÖÊý³Ë·¨¹«Ê½¿ÉÖª£¬
Ôʽ=(1+)(1-)(1+)(1-)(1+)(1-)¡(1+)¡¤(1-)(1+)(1-)
=¡Á¡Á¡Á¡Á¡Á¡Á¡¡Á¡Á¡Á¡Á
=¡¤
¡¡ =.
Àý11¡¡ ÒÑÖª(a+b)2=7£¬(a-b)2=4£¬Çóa2+b2£¬abµÄÖµ.
(·ÖÎö)ÓÉÒÑÖª(a+b)2=7£¬(a-b)2=4£¬¾ÍÄ¿Ç°µÄ֪ʶˮƽ£¬¾ßÌåÇó³öaºÍbµÄÖµÊDZȽÏÀ§Äѵģ¬µ«ÓÉÕûʽµÄ³Ë·¨¹«Ê½¿ÉÒÔ½«ÒÑÖª»¯³É£º
a2+2ab+b2=7£¬¢Ù
a2-2ab+b2=4£¬¢Ú
ÓÉ¢Ù+¢Ú¿ÉÒÔÇó³öa2+b2£¬ÓÉ¢Ù-¢Ú¿ÉÒÔÇó³öab.
½â£ºÓÉÌâÒâ¿ÉÖª£¬
a2+2ab+b2=7£¬¢Ù
a2-2ab+b2=4£¬¢Ú
¢Ù+¢ÚµÃ2(a2+b2)=11£¬¡àa2+b2=.
¢Ù-¢ÚµÃ4ab=3.¡àab=.
С½á (1)ÓÉÁ½ÊýºÍµÄƽ·½ºÍÁ½Êý²îµÄƽ·½£¬¿ÉÒÔͨ¹ýÁ½Ê½µÄ¼Ó¼õÇó³öÁ½ÊýµÄƽ·½ºÍÓëÁ½ÊýµÄ»ý£¬Í¬Àí£¬ÒÑÖªÁ½ÊýºÍµÄƽ·½»òÁ½Êý²îµÄƽ·½£¬ÒÔ¼°Á½ÊýµÄƽ·½ºÍ£¬¿ÉÒÔÇó³öÁ½ÊýµÄ»ý.
(2)ÓÉƽ·½²î¹«Ê½£¬Ò²¿ÉÒÔ½øÐбäÐÎ.ÀýÈ磺ÒÑÖªa2-b2=14£¬a+b=7£¬ÄÇôa-b=2.
Àý12¡¡ ¹Û²ìÏÂÁи÷ʽ£º
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
¸ù¾ÝÇ°Ãæ¸÷ʽµÄ¹æÂɿɵãº
(x-1)(xn+xn-1+xn-2+¡+x+1)=¡¡¡¡¡¡ .(ÆäÖÐnΪÕýÕûÊý)
(·ÖÎö)ÓÉÒÑÖª¸÷ʽ¿ÉÒÔ·¢ÏÖ£º
(x-1)(xn+xn-1+xn-2+¡+x+1)=xn+1-1.
С½á¡¡ ÓëÉÏÀýÀàËƵØÓУº
ÓÉ(a-b)(a+b)=a2-b2
(a-b)(a2+ab+b2)=a3-b3
(a-b)(a3+a2b+ab2+b3)=a4-b4
¡¡
¿ÉÒԵóö(a-b)(an+an-1b+an-2b2+¡+bn)=an+1-bn+1
ѧÉú×öÒ»×ö¡¡ ¹Û²ìÏÂÁи÷ʽ£º
1¡¤2¡¤3¡¤4+1=52
2¡¤3¡¤4¡¤5+1=112
3¡¤4¡¤5¡¤6+1=192
¡¡
(1)Çëд³öÒ»¸ö¾ßÓÐÆÕ±éÐԵĽáÂÛ£¬²¢¸ø³öÖ¤Ã÷£»
(2)¸ù¾Ý(1)¼ÆËã2000¡¤2001¡¤2002¡¤2003+1.(ÓÃÒ»¸ö×î¼òʽ×Ó±íʾ)
ÀÏʦÆÀÒ»ÆÀ¡¡ (1)n(n+1)(n+2)(n+3)+1=(n2+3n+1)2£¬ÍƵ¼ÈçÏ£º
¡ßn(n+1)(n+2)(n+3)+1
=[n(n+3)][(n+1)(n+2)]+1
=(n2+3n)(n2+3n+2)+1
=(n2+3n)2+2(n2+3n)+1
=(n2+3n+1)2£¬
¡àn(n+1)(n+2)(n+3)+1=(n2+3n+1)2.
(2)µ±n=2000ʱ£¬
(n2+3n+1)2=(20002+3¡Á2000+1)2=40060012£¬
¡à2000¡¤2001¡¤2002¡¤2003+1=40060012.
Ò×´íÓëÒÉÄÑÌâ
Àý13¡¡ ¼ÆËã.
(1)(2x+y-z+10)(2x-y+z+10)£»
(2)(a+b)2(a-b)2-(a2+b2)(a-b).
´í½â£º(1)(2x+y-z+10)(2x-y+z+10)
=[2x+(y-z+10)][2x-(y-z+10)]
=4x2-(y-z+10)2.
(2)(a+b)2(a-b)2-(a2+b2)(a-b)
=[(a+b)(a-b)]2-[(a2)2-(b2)2]
=(a2-b2)2-(a4-b4)
=(a4-b4)-(a4-b4)
=0.
(·ÖÎö) µÚ(1)СÌâµÄÁ½¸öÀ¨ºÅÖУ¬2xÓë10ÊÇÏàͬµÄ²¿·Ö£¬yÓë-y¼°-zÓëz¶¼»¥ÎªÏà·´Êý£¬·Ö×é½áºÏºó¿ÉÀûÓÃƽ·½²î¹«Ê½.
µÚ(2)СÌâÖУ¬(a+b)2(a-b)2ÔÚÄæÓûýµÄ³Ë·½ÐÔÖʺó¿ÉÀûÓÃƽ·½²î¹«Ê½£¬(a2+b2)(a-b)£¬ÔòÐèÀûÓöàÏîʽµÄÔËËã·¨Ôò¼ÆËã.
Õý½â£º(1)(2x+y-z+10)(2x-y+z+10)
=[(2x+10)+(y-z)][(2x+10)-(y-z)]
=(2x+10)2-(y-z)2
=4x2-y2-z2+10x+2yz+100.
(2)(a+b)2(a-b)2-( a2+b2)(a-b)
=[(a+b)(a-b)]2-(a3+ab2-a2b-b3)
=(a2-b2)2-a3-ab2+a2b+b3
=a4-a3-2a2b2+a2b-ab2+b3+b4.
С½á¡¡ ´í½âµÚ(1)СÌâÊÇÔÚÌíÀ¨ºÅʱ·¢Éú·ûºÅ´íÎó.´í½âµÚ(2)СÌâµÄ´íÎóÓжþ£ºÒ»ÊÇֻƾÏëÏó¶øÎÞ¸ù¾ÝµØÓÃa4-b4´úÌæ(a2-b2)2£¬ÆäʵÕâ¶þÕß²¢²»ÏàµÈ£»¶þÊǼÆËã(a2+b2)(a-b)ʱ£¬ÔÚ²»¾ß±¸Ê¹ÓÃƽ·½²î¹«Ê½µÄÌõ¼þÏ£¬´íÎóµØʹÓÃÁËÕâ¸ö¹«Ê½.
Ó¦¸ÃÀι̵ØÕÆÎÕ¹«Ê½µÄÌØÕ÷£¬½âÌâʱÿһ²½¶¼±ØÐëÓÐÀíÓоݣ¬°üÀ¨ÑÏ·À·¢Éú·ûºÅ´íÎó.
Öп¼Õ¹Íû¡¡ µã»÷Öп¼
Öп¼ÃüÌâ×ܽáÓëÕ¹Íû
±¾½Ú֪ʶÔÚÖп¼ÖжàÒÔÌî¿Õ¡¢Ñ¡ÔñÌâµÄÐÎʽ³öÏÖ£¬Ò²ÓÐÉÙ²¿·ÖµÄ»¯¼òÇóÖµÌâ¼°Óë½â·½³Ì¡¢½â²»µÈʽºÍº¯Êý֪ʶ½áºÏÔÚÒ»ÆðµÄ×ÛºÏÌâ.
Öп¼ÊÔÌâÔ¤²â
Àý1 (2004¡¤±±¾©)ÈôaµÄֵʹµÃx2+4x+a=(x+2)2-1³ÉÁ¢£¬ÔòaµÄֵΪ(¡¡¡¡ )
A.5¡¡¡¡¡¡¡¡¡¡¡¡ B.4¡¡¡¡¡¡¡¡¡¡¡¡ C.3¡¡¡¡¡¡¡¡¡¡¡¡ D.2
(·ÖÎö)ÒòΪx2+4x+a=(x+2)2-1£¬ËùÒÔx2+4x+a=x2+4x+3£¬Òò´Ë£¬a=3£¬¹ÊÕýÈ·´ð°¸ÎªCÏî.
Àý2 (2004¡¤É½Î÷)ÒÑÖªx+y=1£¬ÄÇôx2+xy+y2µÄֵΪ¡¡¡¡¡¡ .
(·ÖÎö) ÓÉx2+xy+y2µÃx2+xy+y2=(x2+2xy+y2)= (x+y)2.ÓÖÓÉÓÚx+y=1£¬Ëù
ÒÔx2+xy+y2=(x+y)2=¡Á12=.
´ð°¸£º
Àý3¡¡ (2004¡¤ºÚÁú½)Èô+(xy-6)2=0£¬Ôòx2+y2µÄֵΪ(¡¡¡¡ )
A.13¡¡¡¡¡¡¡¡¡¡¡¡ B.26¡¡¡¡¡¡¡¡¡¡¡¡ C.28¡¡¡¡¡¡¡¡¡¡¡¡ D.37
(·ÖÎö) ±¾ÌâÖ÷Òª¿¼²éÁé»îÓ¦ÓÃÍêȫƽ·½¹«Ê½¼°Æä±äʽ.Óɾø¶ÔÖµºÍƽ·½µÄ·Ç¸ºÐԿɵÃ
¡à
¡àx2+y2=(x+y)2-2xy=52-2¡Á6=13.Òò´Ë£¬ÕýÈ·´ð°¸ÎªAÏî.
Àý4¡¡ (2004¡¤Äϲý)Èçͼ15£18ËùʾµÄÊÇÓÃ4¸öÏàͬµÄС¾ØÐÎÓë1¸öСÕý·½ÐÎÏâǶ¶ø³ÉµÄÕý·½ÐÎͼ°¸£¬ÒÑÖª¸Ãͼ°¸µÄÃæ»ýΪ49£¬Ð¡Õý·½ÐεÄÃæ»ýΪ4£¬ÈôÓÃx£¬y±íʾС¾ØÐεÄÁ½±ß³¤(x£¾y)£¬Çë¹Û²ìͼ°¸£¬Ö¸³öÒÔϹØϵʽÖУ¬²»ÕýÈ·µÄÊÇ(¡¡¡¡ )
A.x+y=7¡¡¡¡¡¡¡¡ B.x-y=2¡¡¡¡¡¡¡¡ C.4xy+4=49¡¡¡¡¡¡¡¡¡¡ D.x2+y2=25
(·ÖÎö)ÓÉͼʾ¿ÉÒÔ·¢ÏÖ£º
(x+y)2=4xy+(x-y)2£¬
²¢ÇÒ(x+y)2=49£¬(x-y)2=4.
ËùÒÔx+y=7£¬x-y=2£¬4xy+4=49£¬
¶øx2+y2=[(x+y)2+(x-y)2]=(49+4)=¡Á53¡Ù25.
¹Ê¹Øϵʽ²»ÕýÈ·µÄÊÇD.
´ð°¸£ºD
Àý5¡¡ (2004¡¤¹ãÖÝ)·½³Ì×éµÄ½âΪ¡¡¡¡¡¡ .
(·ÖÎö)±¾ÌâÖ÷Òª¿¼²éƽ·½²î¹«Ê½µÄÁé»îÓ¦ÓÃ.
ÒòΪx2-y2=(x+y)(x-y)£¬ÇÒx+y=5£¬ËùÒÔx-y=3.
ËùÒÔÔ·½³Ì×é¿ÉÒÔ»¯ÎªËùÒÔ
¡àÔ·½³Ì×éµÄ½âΪ
¿ÎÌÃС½á¡¡ ±¾½Ú¹éÄÉ
3.Çé¸Ð̬¶ÈÓë¼ÛÖµ¹Û£º(1)ͨ¹ý´Ó¶àÏîʽµÄ³Ë·¨µ½³Ë·¨¹«Ê½£¬ÔÙÔËÓù«Ê½¼ÆËã¶àÏîʽµÄ³Ë·¨£¬ÅàÑøѧÉú´ÓÒ»°ãµ½ÌØÊ⣬ÔÙ´ÓÌØÊâµ½Ò»°ãµÄ˼άÄÜÁ¦£»(2)ͨ¹ý³Ë·¨¹«Ê½µÄ¼¸ºÎ±³¾°£¬ÅàÑøѧÉúÔËÓÃÊýÐνáºÏµÄ˼Ïë·½·¨ºÍÕûÌåµÄÊýѧ˼Ïë·½·¨µÄÄÜÁ¦.
2.¹ý³ÌÓë·½·¨£º¾Àú̽Ë÷ƽ·½²î¹«Ê½¡¢Íêȫƽ·½¹«Ê½ºÍ¹«Ê½(x+a)(x+b)=x2+(a+b)x+abµÄ¹ý³Ì£¬ÅàÑøѧÉúÑо¿ÎÊÌâºÍ̽Ë÷¹æÂɵķ½·¨.
1.֪ʶÓë¼¼ÄÜ:ÕÆÎÕÕûʽ³Ë·¨µÄƽ·½²î¹«Ê½¡¢Íêȫƽ·½¹«Ê½ºÍ(x+a)(x+b)=x2+(a+b)x+ab¹«Ê½£¬Í¨¹ý¹«Ê½ÔËÓã¬ÅàÑøѧÉúÔËÓù«Ê½µÄ¼ÆËãÄÜÁ¦.
4¡¢ÑµÁ··´À¡´Ù½øѧÉúѧϰÄÜÁ¦µÄÌá¸ßºÍ·¢Õ¹. ѵÁ··´À¡ÊÇѧϰµÄÒ»¸öÖØÒª»·½Ú£¬¼ÈÄÜÈÃѧÉú»ñµÃ³É¹¦µÄϲÔÃ,Ìá¸ßѧϰÄÜÁ¦,ÓÖÄܼ°Ê±ÕÒ³ö²»×㣬µ÷ÕûѧϰĿ±ê£¬´Ù½ø×ÔÉí·¢Õ¹.
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com