0  202682  202690  202696  202700  202706  202708  202712  202718  202720  202726  202732  202736  202738  202742  202748  202750  202756  202760  202762  202766  202768  202772  202774  202776  202777  202778  202780  202781  202782  202784  202786  202790  202792  202796  202798  202802  202808  202810  202816  202820  202822  202826  202832  202838  202840  202846  202850  202852  202858  202862  202868  202876  447090 

3.(1)ԭʽ=5x2-58x-24£»¡¡¡¡¡¡¡¡¡¡ (2)ԭʽ=x2+2xy+y2-1£»

(3)ԭʽ=4x2+y2+9-4xy-12x+6y£»¡¡¡¡ ¡¡¡¡ (4)ԭʽ=x4-8x2+16.

ÊÔÌâÏêÇé

2.(1)ԭʽ=4a2+20ab+25b2£»¡¡ ¡¡¡¡ (2)ԭʽ=16x2-24xy+9y2£»

(3)ԭʽ=4m2+4m+1£»¡¡¡¡¡¡¡¡¡¡¡¡¡¡ (4)ԭʽ=a2-2ab+b2£»

(5)ԭʽ=3969£»¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ (6)ԭʽ=9604.

ÊÔÌâÏêÇé

1.(1)ԭʽ=x2-y2£»¡¡ (2)ԭʽ=x2y2-1£»¡¡ (3)ԭʽ=4a2-9b2£»

(4)ԭʽ=25-4b2£»¡¡¡¡ (5)ԭʽ=3999999£» (6)ԭʽ=999996.

ÊÔÌâÏêÇé

2.Ò»¶¨ÒªÕÆÎÕ¹«Ê½µÄ½á¹¹ÌØÕ÷ºÍ×Öĸ±íʾÊýµÄ¹ã·ºÒâÒ壬ͨ¹ýѧϰ´ïµ½Äܹ»ÊìÁ·¡¢Áé»îµØÔËÓó˷¨¹«Ê½µÄ³Ì¶È.

Ï°ÌâÑ¡½â¡¡ ¿Î±¾Ï°Ìâ

¿Î±¾µÚ184-185Ò³

Ï°Ìâ15.3

ÊÔÌâÏêÇé

1.±¾½ÚÖ÷ҪѧϰÁË£º

(1)Õûʽ³Ë·¨µÄƽ·½²î¹«Ê½(a+b)(a-b)=a2-b2£»

(2)Õûʽ³Ë·¨µÄÍêȫƽ·½¹«Ê½(a¡Àb)2=a2¡À2ab+b2.

ÊÔÌâÏêÇé

4.ÖصãÓëÄѵ㣺ÖصãÊÇÕÆÎÕ¹«Ê½(a+b)(a-b)=a2-b2,(a¡Àb)2=a2¡À2ab+b2.ÄѵãÊǹ«Ê½ÖÐ×ÖĸµÄ¹ã·ºº¬Òå.

½Ì²Ä½â¶Á¡¡ ¾«»ªÒªÒå

ÊýѧÓëÉú»î

Èçͼ15£­16Ëùʾ£¬±ß³¤ÎªaµÄ´óÕý·½ÐÎÖÐÓÐÒ»¸ö±ß³¤ÎªbµÄСÕý·½ÐΣ¬

(1)Çë±íʾͼ15£­16(1)ÖÐÒõÓ°²¿·ÖµÄÃæ»ý£»

(2)ijͬѧ½«ÒõÓ°²¿·ÖÆ´³ÉÁËÒ»¸ö³¤·½ÐΣ¬Èçͼ15£­16(2)Ëùʾ£¬Õâ¸ö³¤·½Ðεij¤ºÍ¿í·Ö±ðÊǶàÉÙ£¿ÇëÄã±íʾ³öËüµÄÃæ»ý£¿

(3)±È½Ï(1)(2)µÄ½á¹û£¬ÄãÄÜ·¢ÏÖʲô£¿

˼¿¼ÌÖÂÛ¡¡ ÓÉͼ15£­16(1)¿ÉÖª£¬ÒõÓ°²¿·ÖµÄÃæ»ýΪ(a2-b2)£¬ÓÉͼ15£­16(2)¿ÉÖª£¬Æ´³É³¤·½Ðεij¤Îª(a+b),¿íΪ(a-b),ÆäÃæ»ýΪ(a+b)(a-b)£¬ÓÉÓÚͼ(2)ÊÇÓÉͼ(1)Æ´³ÉµÄ£¬¹ÊÁ½Í¼Ãæ»ýÏàµÈ£¬ËùÒÔÓÐ(a+b)(a-b)=a2-b2ÄÇôÈçºÎÖ¤Ã÷ÄØ£¿

֪ʶÏê½â

֪ʶµã1¡¡ ƽ·½²î¹«Ê½¼°Æäµ¼³ö

ƽ·½²î¹«Ê½ÊÇÖ¸(a+b)(a-b)=a2-b2.

Õâ¾ÍÊÇ˵£¬Á½¸öÊýµÄºÍÓëÕâÁ½¸öÊýµÄ²îµÄ»ýµÈÓÚÕâÁ½¸öÊýµÄƽ·½²î.

¿Î±¾Öб¾½ÚµÄ¿ªÊ¼ÊÇÏÈÈÃͬѧÃÇ×ö¼¸¸ö¶àÏîʽÏà³ËµÄСÌâ.

¾­¹ý¼ÆË㣬ͬѧÃÇÊ×ÏÈ·¢ÏÖ£¬ËĸöСÌâËùµÃµ½µÄ½á¹ûÓоªÈ˵ÄÏà֮ͬ´¦£ºÃ¿¸öСÌâµÄ½á¹û¶¼Ö»º¬ÓÐÁ½Ï¶øÇÒ¶¼¿ÉÒÔд³ÉÁ½¸öÊýµÄƽ·½²îÐÎʽ.

Ϊʲô»áÓÐÕâЩÏà֮ͬ´¦ÄØ£¿Í¬Ñ§ÃÇ»áÏëµ½£¬ÕâÊÇÓÉÓÚÿ¸öСÌâÖеÄÁ½¸ö¶àÏîʽ¶¼Óзdz£ÌØÊâµÄ¹ØÁª£ºËüÃǵĵÚÒ»ÏÏàͬ£¬µÚ¶þÏîµÄ¾ø¶ÔÖµÏàͬ£¬µ«ÊÇ·ûºÅÏà·´.

¹éÄÉÀàËƵĶàÏîʽÏà³ËµÄʽ×Ó£¬¾ÍµÃµ½ÁËƽ·½²î¹«Ê½(a+b)(a-b)=a2-a2.

Ö±½Ó¼ÆËãÒ²¿ÉÒԵõ½Õâ¸ö¹«Ê½£º(a+b)(a-b)=a2-ab+ab-b2=a2-b2.

[×¢Òâ] a,b½ö½öÊÇÒ»¸ö·ûºÅ£¬ËüÃÇ¿ÉÒÔ±íʾÊý£¬Ò²¿ÉÒÔ±íʾʽ×Ó(µ¥Ïîʽ¡¢¶àÏîʽµÈ)£¬Ö»ÊÇËüÃǵĺÍÓë²îµÄ»ý£¬Ò»¶¨µÈÓÚËüÃǵÄƽ·½²î.

ÈÏʶ¹«Ê½µÄÌØÕ÷ÖÁ¹ØÖØÒª.

ƽ·½²î¹«Ê½µÄÌØÕ÷£º¹«Ê½µÄ×ó±ßÊÇÁ½¸öÊýµÄºÍ³ËÒÔÕâÁ½¸öÊýµÄ²î£¬¶ø¹«Ê½µÄÓÒ±ßÇ¡ºÃÊÇÕâÁ½¸öÊýµÄƽ·½²î.

֪ʶ¹æÂÉС½á¡¡ (1)ÔÚÓ¦Óù«Ê½(a+b)(a-b)=a2-b2ʱ£¬Ðè×Ðϸʶ±ð¹«Ê½ÖеÄaÓëb£¬ÀýÈ磺(2x+3)(2x-3)ÖУ¬°Ñ2x¿´³Éa£¬3¿´³Éb£»(-m+2n)(-m-2n)ÖУ¬°Ñ-m¿´³Éa£¬2n¿´³Éb£»(3a-2b)(-3a-2b)ÖÐ,°Ñ-2b¿´³Éa,3a¿´³Éb£¬Òò´ËÓУº

(2x+3)(2x-3)=(2x)2-32=4x2-9£»

(-m+2n)(-m-2n)=(-m)2-(2n)2=m2-4n2£»

(3a-2b)(-3a-2b)=(-2b)2-(3a)2=4b2-9a2.

(2)ÔÚ51¡Á49ÖУ¬a==50£¬b==1£¬

¡à51¡Á49=(50+1)(50-1)=502-12=2499.

֪ʶµã2¡¡ Íêȫƽ·½¹«Ê½¼°ÆäÍƵ¼

̽¾¿½»Á÷

¼ÆËãÏÂÁи÷ʽ£¬ÄãÄÜ·¢ÏÖʲô¹æÂÉ£¿

(1)(p+1)2=(p+1)(p+1)=¡¡¡¡¡¡ £»

(2)(m+2)2=¡¡¡¡ £»

(3)(p-1)2=(p-1)(p-1)=¡¡¡¡¡¡ £»

(4)(m-2)2=¡¡¡¡¡¡ .

µã²¦¡¡ Á½¸öÊýºÍ(»ò²î)µÄƽ·½£¬µÈÓÚÕâÁ½¸öÊýµÄƽ·½ºÍ¼ÓÉÏ(»ò¼õÈ¥)ÕâÁ½¸öÊý³Ë»ýµÄ2±¶.

Ò»°ãµØ£¬ÎÒÃÇÓУº

(a+b)2= a2+2ab+b2,(a-b)2=a2-2ab+b2.

Á½ÊýºÍ(»ò²î)µÄƽ·½£¬µÈÓÚËüÃǵÄƽ·½ºÍ£¬¼Ó(»ò¼õ)ËüÃǵĻýµÄ2±¶.ÕâÁ½¸ö¹«Ê½½Ð×ö(³Ë·¨µÄ)Íêȫƽ·½¹«Ê½.

ÀýÈ磺(2x+3)2=(2x)2+2¡¤2x¡¤3+32=4x2+12x+9£¬

(3m-4)2=(3m)2-2¡¤3m¡¤4+42=9m2-24m+16.

ÔÚ¼ÇÒ乫ʽ(a¡Àb)2=a2¡À2ab+b2ʱ£¬ÒªÔÚÀí½âºÍ±È½ÏµÄ»ù´¡ÉϼÇÒ䣬Á½¸ö¹«Ê½Ïà֮ͬ´¦ÔÚÓÚÁ½¸öÊýµÄƽ·½ºÍ£¬²»Í¬Ö®´¦ÔÚÓÚÖмäÏîµÄ·ûºÅ²»Í¬£¬¼ÆËãʱҪעÒâ.È磺(x-2y)2=x2-2¡¤x¡¤2y+(2y)2=x2-4xy+4y2.

˵Ã÷Íêȫƽ·½¹«Ê½£¬¼È¿ÉÒÔÓöàÏîʽ³Ë·¨½øÐÐÍƵ¼£º

(a+b)(a+b)=a¡¤a+a¡¤b+b¡¤a+b2= a2+2ab+b2.

ͬʱ£¬Ò²¿ÉÒÔÓù۲ìÇé¾³À´ÍƵ¼£¬Èçͼ15£­17Ëùʾ.

ÓÉͼ(1)¿ÉÖª£¬(a+b)2=a2+2ab+b2£¬

ÓÉͼ(2)¿ÉÖª£¬(a-b)2=a2-2ab+b2.

֪ʶµã3¡¡ ÌíÀ¨ºÅ·¨Ôò

ÌíÀ¨ºÅʱ£¬Èç¹ûÀ¨ºÅÇ°ÃæÊÇÕýºÅ£¬À¨µ½À¨ºÅÀïµÄ¸÷Ï²»¸Ä±ä·ûºÅ£»

Èç¹ûÀ¨ºÅÇ°ÃæÊǸººÅ£¬À¨µ½À¨ºÅÀïµÄ¸÷Ï¸Ä±ä·ûºÅ.

[˵Ã÷] ÌíÀ¨ºÅ·¨ÔòÓëÈ¥À¨ºÅ·¨ÔòÊÇÒ»Öµģ¬ÌíÀ¨ºÅÕýÈ·Óë·ñ£¬¿ÉÓÃÈ¥À¨ºÅ½øÐмìÑé.

֪ʶµã4¡¡ ¹«Ê½(x+a)(x+b)=x2+(a+b)x+ab

¹«Ê½(x+a)(x+b)=x2+(a+b)x+abµÄÍƵ¼¿ÉÒÔÓöàÏîʽ³Ë·¨¹«Ê½×µµ¼.

(x+a)(x+b)

=x2+bx+ax+ab

=x2+(a+b)x+ab.

ÀýÈ磺(x+2)(x+3)=x2+(2+3)x+2¡Á3=x2+5x+6£¬

(x+2)(x-3)=x2+(2-3)x+2¡Á(-3)=x2-x-6.

[×¢Òâ]¡¡ ×¢ÒâaÓëbµÄÖµ£¬¸Ã¹«Ê½ÔÚ¶àÏîʽ³Ë·¨Öй㷺ӦÓÃ.

µäÀýÆÊÎö¡¡ ʦÉú»¥¶¯

»ù±¾ÖªÊ¶Ó¦ÓÃÌâ

±¾½Ú֪ʶµÄ»ù´¡Ó¦ÓÃÖ÷Òª°üÀ¨£º(1)»áÍƵ¼Æ½·½²î¹«Ê½£»(2)»áÍƵ¼Íêȫƽ·½¹«Ê½£¬²¢ÄÜÔËÓù«Ê½½øÐмòµ¥µÄ¼ÆË㣻(3)ÕÆÎÕ¹«Ê½(x+a)(x+b)=x2+(a+b)x+ab.

Àý1¡¡ ÔËÓÃƽ·½²î¹«Ê½¼ÆËã.

(1)(3x+2)(3x-2)£»(2)(b+2a)(2a-b)£»(3)(-x+2y)(-x-2y).

(·ÖÎö) (1)ÖУ¬°Ñ3x¿´×÷a£¬2¿´×÷b£»(2)ÖУ¬2 a¿´×÷a£¬b¿´×÷b£»(3)ÖУ¬-x¿´×÷ a£¬2y¿´×÷b.

½â£º(1)(3x+2)(3x-2)=(3x)2-22=9x2-4.

(2)(b+2a)(2a-b)=(2a)2-b2=4a2-b2.

(3)(-x+2y)(-x-2y)=(-x)2-(2y)2=x2-4y2

Àý2¡¡ ÔËÓÃÍêȫƽ·½¹«Ê½¼ÆËã.

(1)(4m+n)2£»¡¡ (2)(y-)2.

(·ÖÎö)¡¡ Ö÷ÒªÊÇÕýÈ·µØÓ¦Óù«Ê½.

½â£º(1)(4m+n)2=(4m)2+2¡¤4m¡¤n+n2=16m2+8mn+n2.

(2)(y-)2=y2-2y¡¤+()2=y2-y+.

[˵Ã÷] ÔÚÓ¦Óù«Ê½(a+b)(a-b)=a2-b2ºÍ(a¡Àb)2=a2¡À2ab+b2ʱ£¬¹Ø¼üÊÇ¿´ÇåÌâÄ¿ÖÐÄÄÒ»¸öÊǹ«Ê½ÖеÄa£¬ÄÄÒ»¸öÊǹ«Ê½ÖеÄb.

Àý3¡¡ ÔËÓó˷¨¹«Ê½¼ÆËã.

(1)102¡Á98£» (2)1022£» (3)992.

(·ÖÎö)Áé»îÓ¦Óó˷¨¹«Ê½¼ÆËã.(1)ÖУ¬102¡Á98=(100+2)(100-2)£»(2)ÖУ¬1022=(100+2)2£»(3)ÖУ¬992=(100-1)2£¬È»ºóÀûÓù«Ê½¼ÆËã¼´¿É.

½â£º(1)102¡Á98=(100+2)(100-2)=1002-22=10000-4=9996.

(2)1022=(100+2)2=1002+2¡Á100¡Á2+22=10000+400+4=10404.

(3)992=(100-1)2=1002-2¡Á100¡Á1+12=10000-200+1=9801.

Àý4¡¡ ¼ÆËã.

(1)(m-5)(m+3)£» (2)(2x-3)(2x-4).

(·ÖÎö)±¾ÌâÖ÷Òª¿¼²é¹«Ê½(x+a)(x+b)=x2+(a+b)x+abµÄÓ¦ÓÃ.

½â£º(1)(m-5)(m+3)

=m2+[(-5)+3]m+(-5)¡¤3

=m2-2m-15.

(2)(2x-3)(2x-4)

=(2x)2+[(-3)+(-4)]¡¤2x+(-3)¡¤(-4)

=4x2-14x+12.

×ÛºÏÓ¦ÓÃÌâ

±¾½Ú֪ʶµÄ×ÛºÏÓ¦ÓÃÖ÷Òª°üÀ¨£º(1)¹«Ê½Ö®¼äµÄ×ÛºÏÓ¦Óã»(2)Óë·½³ÌµÄ×ÛºÏÓ¦Óã»(3)Óë²»µÈʽµÄ×ÛºÏÓ¦ÓÃ.

Àý5¡¡ ¼ÆËã.

(1)(x+2y-3)(x-2y+3)£»¡¡ (2)(a+b+c)2£»

(3)(y+2)(y-2)-(y-1)(y+5).

(·ÖÎö) ±¾ÌâÖ÷Òª¿¼²éÁé»îÓ¦ÓÃÕûʽ³Ë·¨¹«Ê½½øÐмÆËã.(1)Ìâ°Ñx¿´×÷¹«Ê½ÖеÄa£¬(2y-3)¿´³É¹«Ê½ÖеÄb£»(2)Ìâ°Ñ(a+b)¿´³É¹«Ê½ÖеÄa£¬c¿´³É¹«Ê½ÖеÄb£»(3)ÌâÔËÓù«Ê½(x+a)(x+b)=x2+(a+b)x+ab.

½â£º(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]

=x2-(2y-3)2=x2-(4y2-12y+9)

=x2-4y2+12y-9.

(2)(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2

=a2+2ab+b2+2ac+2bc+c2.

(3)(y+2)(y-2)-(y-1)(y+5)=(y2-4)-(y2+4y-5)

=y2-4-y2-4y+5=-4y+1.

Àý6¡¡ ¼ÆËã.

(1)(b-2)(b2+4)(b+2)£»¡¡ (2)(2a-b)(2a+b)-(3a-2b)(3a+2b).

(·ÖÎö) (1)ÌâÓó˷¨µÄ½»»»ÂɺͽáºÏÂÉ£»(2)ÌâÓÃƽ·½²î¹«Ê½ºÍÕûʽ¼õ·¨.

½â£º(1)(b-2)(b2+4)(b+2)=(b-2)(b+2)(b2+4)

=(b2-4)(b2+4)=b4-16.

(2)(2a-b)(2a+b)-(3a-2b)(3a+2b)=(4a2-b2)-(9a2-4b2)

=4a2-b2-9a2+4b2=-5a2+3b2.

ѧÉú×öÒ»×ö¡¡ ¼ÆËã.

(1)(-x)(+x2)(x+)£»¡¡ (2)(x+3)2-(x+2)(x-2).

ÀÏʦÆÀÒ»ÆÀ¡¡ (1)ԭʽ=-x4£»¡¡ (2)ԭʽ=6x+13.

Àý7¡¡ ½â·½³Ì 2(x-2)+x2=(x+1)(x-1)+x

(·ÖÎö)¡¡ ÊìÁ·Ó¦ÓÃÕûʽµÄ³Ë·¨¹«Ê½.

½â£º2x-4+x2=x2-1+x£¬

2x+x2-x2-x=-1+4£¬

¡àx=3.

Àý8¡¡ ½â²»µÈʽx(x-3)£¾(x+7)(x-7).

(·ÖÎö)¿¼²éÓ¦ÓÃÕûʽ³Ë·¨¼°Æ½·½²î¹«Ê½È¥À¨ºÅ.

½â£ºx2-3x£¾x2-49£¬

x2-3x-x2£¾-49£¬

-3x£¾-49£¬

¡àx£¼.

̽Ë÷Óë´´ÐÂÌâ

Ö÷Òª¿¼²éÁé»îÓ¦ÓÃËùѧ¹«Ê½½â¾öÏÖʵÎÊÌâ.

Àý9¡¡ ¼ÆËã19982-1997¡Á1999.

(·ÖÎö)ͬʱӦÓÃÍêȫƽ·½¹«Ê½ºÍƽ·½²î¹«Ê½»¯¼ò£¬ÆäÖУ¬1997¡Á1999=(1998-1)(1998+1).

½â£º19982-1997¡Á1999

=19982-(1998-1)(1998+1)

=19982-(19982-1)

=19982-19982+1

=1.

ѧÉú×öÒ»×ö¡¡ ¼ÆËã.

ÀÏʦÆÀÒ»ÆÀ¡¡ ԭʽ=

=

=

=

=2003.

Àý10¡¡ ¼ÆËã(2+1)(22+1)(24+1)¡­(22n+1).

(·ÖÎö)Òª¼ÆËã±¾Ì⣬һ°ãÏȼÆËãÿһ¸öÀ¨ºÅÄڵģ¬È»ºóÔÙÇóËüÃǵĻý£¬ÕâÑù×öÊǸ´Ôӵģ¬Ò²ÊDz»±ØÒªµÄ£¬ÎÒÃDz»·Á¿¼ÂÇÓÃƽ·½²î¹«Ê½À´½â¾ö£¬¼´ÔÚԭʽÉϳËÒÔ(2-1),ÔÙͬʱ³ýÒÔ(2-1)¼´¿É.

½â£ºÔ­Ê½=

=(22-1)(22+1)(24+1)¡­(22n+1)

=(24-1)(24+1)¡­(22n+1)

=(22n)2-1

=24n-1.

ѧÉú×öÒ»×ö¡¡ ¼ÆËã.

(1)3¡¤(22+1)(24+1)¡­(232+1)+1£»

(2)1002-992+982-972+962-952+¡­+22-12£»

(3)(1-)(1-)(1-)¡­(1-)(1-).

ÀÏʦÆÀÒ»ÆÀ¡¡ (1)ÓÉÀý10¿ÉÒԵõ½Ìáʾ.

(22+1)(24+1)¡­(232+1)

=

=[(232)2-1]¡¤

=(264-1).

¡àԭʽ=3¡¤(264-1)+1=264-1+1=264.

(2)ÓÉƽ·½²î¹«Ê½ºÍµÈ²îÊýÁй«Ê½Sn=¿ÉÖª£¬

ԭʽ=(100+99)(100-99)+(98+97)(98-97)+(96+95)(96-95)+¡­+(4+3)(4-3)+(2+1)(2-1)

=100+99+98+97+96+95+¡­+4+3+2+1

=

=5050.

(3)ÓÉƽ·½²î¹«Ê½ºÍ·ÖÊý³Ë·¨¹«Ê½¿ÉÖª£¬

ԭʽ=(1+)(1-)(1+)(1-)(1+)(1-)¡­(1+)¡¤(1-)(1+)(1-)

=¡Á¡Á¡Á¡Á¡Á¡Á¡­¡Á¡Á¡Á¡Á

=¡¤

¡¡ =.

Àý11¡¡ ÒÑÖª(a+b)2=7£¬(a-b)2=4£¬Çóa2+b2£¬abµÄÖµ.

(·ÖÎö)ÓÉÒÑÖª(a+b)2=7£¬(a-b)2=4£¬¾ÍÄ¿Ç°µÄ֪ʶˮƽ£¬¾ßÌåÇó³öaºÍbµÄÖµÊDZȽÏÀ§Äѵģ¬µ«ÓÉÕûʽµÄ³Ë·¨¹«Ê½¿ÉÒÔ½«ÒÑÖª»¯³É£º

a2+2ab+b2=7£¬¢Ù

a2-2ab+b2=4£¬¢Ú

ÓÉ¢Ù+¢Ú¿ÉÒÔÇó³öa2+b2£¬ÓÉ¢Ù-¢Ú¿ÉÒÔÇó³öab.

½â£ºÓÉÌâÒâ¿ÉÖª£¬

a2+2ab+b2=7£¬¢Ù

a2-2ab+b2=4£¬¢Ú

¢Ù+¢ÚµÃ2(a2+b2)=11£¬¡àa2+b2=.

¢Ù-¢ÚµÃ4ab=3.¡àab=.

С½á (1)ÓÉÁ½ÊýºÍµÄƽ·½ºÍÁ½Êý²îµÄƽ·½£¬¿ÉÒÔͨ¹ýÁ½Ê½µÄ¼Ó¼õÇó³öÁ½ÊýµÄƽ·½ºÍÓëÁ½ÊýµÄ»ý£¬Í¬Àí£¬ÒÑÖªÁ½ÊýºÍµÄƽ·½»òÁ½Êý²îµÄƽ·½£¬ÒÔ¼°Á½ÊýµÄƽ·½ºÍ£¬¿ÉÒÔÇó³öÁ½ÊýµÄ»ý.

(2)ÓÉƽ·½²î¹«Ê½£¬Ò²¿ÉÒÔ½øÐбäÐÎ.ÀýÈ磺ÒÑÖªa2-b2=14£¬a+b=7£¬ÄÇôa-b=2.

Àý12¡¡ ¹Û²ìÏÂÁи÷ʽ£º

(x-1)(x+1)=x2-1

(x-1)(x2+x+1)=x3-1

(x-1)(x3+x2+x+1)=x4-1

¸ù¾ÝÇ°Ãæ¸÷ʽµÄ¹æÂɿɵãº

(x-1)(xn+xn-1+xn-2+¡­+x+1)=¡¡¡¡¡¡ .(ÆäÖÐnΪÕýÕûÊý)

(·ÖÎö)ÓÉÒÑÖª¸÷ʽ¿ÉÒÔ·¢ÏÖ£º

(x-1)(xn+xn-1+xn-2+¡­+x+1)=xn+1-1.

С½á¡¡ ÓëÉÏÀýÀàËƵØÓУº

ÓÉ(a-b)(a+b)=a2-b2

(a-b)(a2+ab+b2)=a3-b3

(a-b)(a3+a2b+ab2+b3)=a4-b4

¡­¡­

¿ÉÒԵóö(a-b)(an+an-1b+an-2b2+¡­+bn)=an+1-bn+1

ѧÉú×öÒ»×ö¡¡ ¹Û²ìÏÂÁи÷ʽ£º

1¡¤2¡¤3¡¤4+1=52

2¡¤3¡¤4¡¤5+1=112

3¡¤4¡¤5¡¤6+1=192

¡­¡­

(1)Çëд³öÒ»¸ö¾ßÓÐÆÕ±éÐԵĽáÂÛ£¬²¢¸ø³öÖ¤Ã÷£»

(2)¸ù¾Ý(1)¼ÆËã2000¡¤2001¡¤2002¡¤2003+1.(ÓÃÒ»¸ö×î¼òʽ×Ó±íʾ)

ÀÏʦÆÀÒ»ÆÀ¡¡ (1)n(n+1)(n+2)(n+3)+1=(n2+3n+1)2£¬ÍƵ¼ÈçÏ£º

¡ßn(n+1)(n+2)(n+3)+1

=[n(n+3)][(n+1)(n+2)]+1

=(n2+3n)(n2+3n+2)+1

=(n2+3n)2+2(n2+3n)+1

=(n2+3n+1)2£¬

¡àn(n+1)(n+2)(n+3)+1=(n2+3n+1)2.

(2)µ±n=2000ʱ£¬

(n2+3n+1)2=(20002+3¡Á2000+1)2=40060012£¬

¡à2000¡¤2001¡¤2002¡¤2003+1=40060012.

Ò×´íÓëÒÉÄÑÌâ

Àý13¡¡ ¼ÆËã.

(1)(2x+y-z+10)(2x-y+z+10)£»

(2)(a+b)2(a-b)2-(a2+b2)(a-b).

´í½â£º(1)(2x+y-z+10)(2x-y+z+10)

=[2x+(y-z+10)][2x-(y-z+10)]

=4x2-(y-z+10)2.

(2)(a+b)2(a-b)2-(a2+b2)(a-b)

=[(a+b)(a-b)]2-[(a2)2-(b2)2]

=(a2-b2)2-(a4-b4)

=(a4-b4)-(a4-b4)

=0.

(·ÖÎö) µÚ(1)СÌâµÄÁ½¸öÀ¨ºÅÖУ¬2xÓë10ÊÇÏàͬµÄ²¿·Ö£¬yÓë-y¼°-zÓëz¶¼»¥ÎªÏà·´Êý£¬·Ö×é½áºÏºó¿ÉÀûÓÃƽ·½²î¹«Ê½.

µÚ(2)СÌâÖУ¬(a+b)2(a-b)2ÔÚÄæÓûýµÄ³Ë·½ÐÔÖʺó¿ÉÀûÓÃƽ·½²î¹«Ê½£¬(a2+b2)(a-b)£¬ÔòÐèÀûÓöàÏîʽµÄÔËËã·¨Ôò¼ÆËã.

Õý½â£º(1)(2x+y-z+10)(2x-y+z+10)

=[(2x+10)+(y-z)][(2x+10)-(y-z)]

=(2x+10)2-(y-z)2

=4x2-y2-z2+10x+2yz+100.

(2)(a+b)2(a-b)2-( a2+b2)(a-b)

=[(a+b)(a-b)]2-(a3+ab2-a2b-b3)

=(a2-b2)2-a3-ab2+a2b+b3

=a4-a3-2a2b2+a2b-ab2+b3+b4.

С½á¡¡ ´í½âµÚ(1)СÌâÊÇÔÚÌíÀ¨ºÅʱ·¢Éú·ûºÅ´íÎó.´í½âµÚ(2)СÌâµÄ´íÎóÓжþ£ºÒ»ÊÇֻƾÏëÏó¶øÎÞ¸ù¾ÝµØÓÃa4-b4´úÌæ(a2-b2)2£¬ÆäʵÕâ¶þÕß²¢²»ÏàµÈ£»¶þÊǼÆËã(a2+b2)(a-b)ʱ£¬ÔÚ²»¾ß±¸Ê¹ÓÃƽ·½²î¹«Ê½µÄÌõ¼þÏ£¬´íÎóµØʹÓÃÁËÕâ¸ö¹«Ê½.

Ó¦¸ÃÀι̵ØÕÆÎÕ¹«Ê½µÄÌØÕ÷£¬½âÌâʱÿһ²½¶¼±ØÐëÓÐÀíÓоݣ¬°üÀ¨ÑÏ·À·¢Éú·ûºÅ´íÎó.

Öп¼Õ¹Íû¡¡ µã»÷Öп¼

Öп¼ÃüÌâ×ܽáÓëÕ¹Íû

±¾½Ú֪ʶÔÚÖп¼ÖжàÒÔÌî¿Õ¡¢Ñ¡ÔñÌâµÄÐÎʽ³öÏÖ£¬Ò²ÓÐÉÙ²¿·ÖµÄ»¯¼òÇóÖµÌâ¼°Óë½â·½³Ì¡¢½â²»µÈʽºÍº¯Êý֪ʶ½áºÏÔÚÒ»ÆðµÄ×ÛºÏÌâ.

Öп¼ÊÔÌâÔ¤²â

Àý1 (2004¡¤±±¾©)ÈôaµÄֵʹµÃx2+4x+a=(x+2)2-1³ÉÁ¢£¬ÔòaµÄֵΪ(¡¡¡¡ )

A.5¡¡¡¡¡¡¡¡¡¡¡¡ B.4¡¡¡¡¡¡¡¡¡¡¡¡ C.3¡¡¡¡¡¡¡¡¡¡¡¡ D.2

(·ÖÎö)ÒòΪx2+4x+a=(x+2)2-1£¬ËùÒÔx2+4x+a=x2+4x+3£¬Òò´Ë£¬a=3£¬¹ÊÕýÈ·´ð°¸ÎªCÏî.

Àý2 (2004¡¤É½Î÷)ÒÑÖªx+y=1£¬ÄÇôx2+xy+y2µÄֵΪ¡¡¡¡¡¡ .

(·ÖÎö) ÓÉx2+xy+y2µÃx2+xy+y2=(x2+2xy+y2)= (x+y)2.ÓÖÓÉÓÚx+y=1£¬Ëù

ÒÔx2+xy+y2=(x+y)2=¡Á12=.

´ð°¸£º

Àý3¡¡ (2004¡¤ºÚÁú½­)Èô+(xy-6)2=0£¬Ôòx2+y2µÄֵΪ(¡¡¡¡ )

A.13¡¡¡¡¡¡¡¡¡¡¡¡ B.26¡¡¡¡¡¡¡¡¡¡¡¡ C.28¡¡¡¡¡¡¡¡¡¡¡¡ D.37

(·ÖÎö) ±¾ÌâÖ÷Òª¿¼²éÁé»îÓ¦ÓÃÍêȫƽ·½¹«Ê½¼°Æä±äʽ.Óɾø¶ÔÖµºÍƽ·½µÄ·Ç¸ºÐԿɵÃ

¡à

¡àx2+y2=(x+y)2-2xy=52-2¡Á6=13.Òò´Ë£¬ÕýÈ·´ð°¸ÎªAÏî.

Àý4¡¡ (2004¡¤Äϲý)Èçͼ15£­18ËùʾµÄÊÇÓÃ4¸öÏàͬµÄС¾ØÐÎÓë1¸öСÕý·½ÐÎÏâǶ¶ø³ÉµÄÕý·½ÐÎͼ°¸£¬ÒÑÖª¸Ãͼ°¸µÄÃæ»ýΪ49£¬Ð¡Õý·½ÐεÄÃæ»ýΪ4£¬ÈôÓÃx£¬y±íʾС¾ØÐεÄÁ½±ß³¤(x£¾y)£¬Çë¹Û²ìͼ°¸£¬Ö¸³öÒÔϹØϵʽÖУ¬²»ÕýÈ·µÄÊÇ(¡¡¡¡ )

A.x+y=7¡¡¡¡¡¡¡¡ B.x-y=2¡¡¡¡¡¡¡¡ C.4xy+4=49¡¡¡¡¡¡¡¡¡¡ D.x2+y2=25

(·ÖÎö)ÓÉͼʾ¿ÉÒÔ·¢ÏÖ£º

(x+y)2=4xy+(x-y)2£¬

²¢ÇÒ(x+y)2=49£¬(x-y)2=4.

ËùÒÔx+y=7£¬x-y=2£¬4xy+4=49£¬

¶øx2+y2=[(x+y)2+(x-y)2]=(49+4)=¡Á53¡Ù25.

¹Ê¹Øϵʽ²»ÕýÈ·µÄÊÇD.

´ð°¸£ºD

Àý5¡¡ (2004¡¤¹ãÖÝ)·½³Ì×éµÄ½âΪ¡¡¡¡¡¡ .

(·ÖÎö)±¾ÌâÖ÷Òª¿¼²éƽ·½²î¹«Ê½µÄÁé»îÓ¦ÓÃ.

ÒòΪx2-y2=(x+y)(x-y)£¬ÇÒx+y=5£¬ËùÒÔx-y=3.

ËùÒÔÔ­·½³Ì×é¿ÉÒÔ»¯ÎªËùÒÔ

¡àÔ­·½³Ì×éµÄ½âΪ

¿ÎÌÃС½á¡¡ ±¾½Ú¹éÄÉ

ÊÔÌâÏêÇé

3.Çé¸Ð̬¶ÈÓë¼ÛÖµ¹Û£º(1)ͨ¹ý´Ó¶àÏîʽµÄ³Ë·¨µ½³Ë·¨¹«Ê½£¬ÔÙÔËÓù«Ê½¼ÆËã¶àÏîʽµÄ³Ë·¨£¬ÅàÑøѧÉú´ÓÒ»°ãµ½ÌØÊ⣬ÔÙ´ÓÌØÊâµ½Ò»°ãµÄ˼άÄÜÁ¦£»(2)ͨ¹ý³Ë·¨¹«Ê½µÄ¼¸ºÎ±³¾°£¬ÅàÑøѧÉúÔËÓÃÊýÐνáºÏµÄ˼Ïë·½·¨ºÍÕûÌåµÄÊýѧ˼Ïë·½·¨µÄÄÜÁ¦.

ÊÔÌâÏêÇé

2.¹ý³ÌÓë·½·¨£º¾­Àú̽Ë÷ƽ·½²î¹«Ê½¡¢Íêȫƽ·½¹«Ê½ºÍ¹«Ê½(x+a)(x+b)=x2+(a+b)x+abµÄ¹ý³Ì£¬ÅàÑøѧÉúÑо¿ÎÊÌâºÍ̽Ë÷¹æÂɵķ½·¨.

ÊÔÌâÏêÇé

1.֪ʶÓë¼¼ÄÜ:ÕÆÎÕÕûʽ³Ë·¨µÄƽ·½²î¹«Ê½¡¢Íêȫƽ·½¹«Ê½ºÍ(x+a)(x+b)=x2+(a+b)x+ab¹«Ê½£¬Í¨¹ý¹«Ê½ÔËÓã¬ÅàÑøѧÉúÔËÓù«Ê½µÄ¼ÆËãÄÜÁ¦.

ÊÔÌâÏêÇé

4¡¢ÑµÁ··´À¡´Ù½øѧÉúѧϰÄÜÁ¦µÄÌá¸ßºÍ·¢Õ¹. ѵÁ··´À¡ÊÇѧϰµÄÒ»¸öÖØÒª»·½Ú£¬¼ÈÄÜÈÃѧÉú»ñµÃ³É¹¦µÄϲÔÃ,Ìá¸ßѧϰÄÜÁ¦,ÓÖÄܼ°Ê±ÕÒ³ö²»×㣬µ÷ÕûѧϰĿ±ê£¬´Ù½ø×ÔÉí·¢Õ¹.

ÊÔÌâÏêÇé


ͬ²½Á·Ï°²á´ð°¸