(四)延伸阶段
请用所学的轴对称、旋转对称、中心对称知识设计一幅精美的图片,并命名参加本班组织的几何图案设计大赛。
五 设计说明
最后是我对本节课的几点教学设计说明:本课力求通过富有吸引力、生动有趣的教学过程,充分体现以教师为主导,学生为主体的思想,创设实际情境,如:在揭示概念中,接力赛激趣;在分组探究中给学生创设展现才华的平台;在随堂练习中,形如幸运52般的抢答,把学生的学习气氛推向又一个高潮……这些设想都体现了以学生为主体的理念。
本节课在设计上力求使学生多动手、多思考、多拓展、多反思,让学生不止停留在表层上思考,将知识的探索深化、生活化,在学习中掌握策略,学会学习。
最后,请允许我用几句话来结束我的说课:
给学生一个空间,让他们自己往前走;
给学生一个时间,让他们自己去安排;
给学生一个问题,让他们自己去探索;
给学生一个条件,让他们自己去锻炼;
给学生一个题目,让他们自己去创造。
(三)终结阶段 (学生总结,教师评价)
本课我们认识了中心对称,实际上,对称的内涵远超出了数学的范畴,它出现在自然、艺术(建筑)、科学乃至诗歌里。对称是一种美,没有对称不一定不美,但有了对称生活会更美。在美的音乐声中完成思考:这节课你学到了什么?发现了什么?找到了什么?……(点评:给学生留出时间回顾、思考,让学生畅所欲言,培养学生的语言表达能力和概括能力)
(二)新授阶段
1、指导观察,揭示概念
两个概念用两种不同的方式揭示出来,首先指导学生观察图片,既能复习轴对称的相关知识,又能很好的引出中心对称图形的概念;再引导学生动手操作,观察、发现、揭示中心对称的概念。为了促进学生更好地掌握两个概念,我组织了一个接力赛:让学生列举出生活中具有中心对称性质的实物和图形。这样既能调动学生的积极性,又能满足学生的好胜心理。
具体做法:(1)反复播放几组对称图片,引导学生判断:在这些图片中,哪些是轴对称图形,哪些是旋转对称图形?它们的旋转角分别是多少度?在找出轴对称图形时,回顾相关知识(概念、轴对称和轴对称图形的区别与联系及性质)
(2)动手画出一个平行四边形,观察连接对角线后形成的对着的两个三角形,你能发现什么结论 ?学生不难发现,一个三角形绕对角线交点旋转180度后与另一个三角形重合,从而归纳出中心对称的概念。
2、比较归纳 加深认识
结合轴对称和轴对称图形的区别与联系,对比中心对称和中心对称图形的概念,试归纳出中心对称和中心对称图形的区别与联系,并填入练习卡中。
3、分组探究 揭示性质
以小组为单位,找出成中心对称的两个图形中的等量关系,进一步归纳出中心对称的性质。
探索:教材17页图11.3.3中,△ ABC与 △ A’B’C’ 是关于点O成中心对称的,你能从图中找到哪些等量关系?(学生活动,4人一小组参与讨论,各抒己见,找代表回答,教师参与学生的讨论,并注意帮助个别学生分析图中的等量关系。)学生讨论交流后,归纳出中心对称的基本性质,并填入练习卡内。
4、合作交流 方法点击
运用性质,完成作图。(同组之间相互检查,帮助,推荐组员汇报具体作法),老师做适当的方法点击。
画出题卡中关于O点成中心对称的图形,先点--再线--后图形,循序渐进,逐渐提高。
方法点击:作与某图形成中心对称的图形,关键是作出“关键点”的对称点,再顺次连接各点。
5、知识拓展 发散思维
(1)随堂练习 巩固提高(通过题卡,象幸运52般的抢答,进一步回顾知识点和运用所学内容)
(2)让学生交流中心对称在生活中的运用,在此基础上展示教师寻找的中心对称在生活中的应用片段。如:六角形亮晶晶的雪花正是自然对中心对称的美的概括;广告商标的设计制作,往往能以简单的色彩、线条,勾画出生动、富于创意和内涵的作品。因而只要你细心观察,就不难发现,原来中心对称就在我们身边!
(3)组织教材19页读一读的对弈游戏;让学生试当小魔术师。
(一)导入阶段 (设置悬念 激发兴趣)
我设计了一个魔术,用来导入新课,目的是设置悬念,激发兴趣,让学生观察、猜想、发现。
具体做法:用几张里非中心对称图形的扑克牌和一张是中心对称图形的扑克牌,设置一个小小的魔术:把牌放在桌上,然后闭上眼睛,请一位同学上前,把某一张牌旋转180度后放好。老师睁开眼睛后,能很快确定哪一张是被旋转过的。问:这是为什么?你能当这个魔术师吗?你想当吗?
(四)教学媒体(教具):
作图工具、多媒体课件等。
(三)学习方式:
学生都渴望与他人交流、合作,小组学习可以使学生充分感受到合作的重要和团队的精神力量,增强集体意识,因此本节采取了小组合作交流学习的方式。
(分组依据: 肯定学生群体的个体差异,尊重学生,随意分组,让学生获得公平竞争的体验 。)
(二)学法:1、观察 2、对比 3、联想
(一)教法:
1、情境激学(启发式,情境教学法)
2、目标导学(以探究活动为主)
3、实物辅学(直观教学法)
4、课件助学(演示法)
最有价值的学习是关于方法的学习,“授人以猎物,不如授人以猎枪”。因此在教学中采用了以下的教法和学法指导。
(二)教学重难点的确定和依据
教学重点及确定的理由:掌握概念是应用的基础,只有理解了概念,才能准确判断,才能正确运用,所以教学重点是中心对称图形与中心对称概念及性质。
教学难点及确定的依据(及解决办法):在实践教学中,学生往往对概念不做深刻的理解,实际应用起来就会发现有许多不明白的地方,根子就在于对其概念与性质的真正理解上。所以教学难点是对中心对称图形与中心对称的区别与联系。
教学关键:怎样突破旋转变换是本课教学的关键。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com