0  202725  202733  202739  202743  202749  202751  202755  202761  202763  202769  202775  202779  202781  202785  202791  202793  202799  202803  202805  202809  202811  202815  202817  202819  202820  202821  202823  202824  202825  202827  202829  202833  202835  202839  202841  202845  202851  202853  202859  202863  202865  202869  202875  202881  202883  202889  202893  202895  202901  202905  202911  202919  447090 

1.必做题:教科书第193页习题15.4第1题(4);第2题;第3题;第4题;第5题;第6题.

试题详情

15.4.2整式的除法

教学目标

①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式、多项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力.

②理解整式除法的算理,发展有条理的思考及表达能力.

教学重点与难点

重点:整式除法的运算法则及其运用.

难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则.

教学准备

卡片及多媒体课件.

教学设计

情境引入

教科书第189页问题:木星的质量约为1.90×1024吨,地球的质量约为5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?

重点研究算式(1.90×1024)÷(5.98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型.

***教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程.

探究新知

(1)计算(1.90×1024)÷(5.98×1021),说说你计算的根据是什么?

(2)你能利用(1)中的方法计算下列各式吗?

8a3÷2a;  6x3y÷3xy;  12a3b2x3÷3ab2

(3)你能根据(2)说说单项式除以单项式的运算法则吗?

***教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述.

单项式的除法法则的推导,应按从具体到一般的步骤进行.探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行.在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展.重视算理算法的渗透是新课标所强调的.

归纳法则

单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

***通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯.

应用新知

例2  计算:

(1)28x4y2÷7x3y;

(2)-5a5b3c÷15a4b.

首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号.对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则.

***单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题.

巩固新知  教科书第191页练习1及练习2.

学生自己尝试完成计算题,同桌交流.

***在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯.

再探新知计算下列各式:(1)(am+bm)÷m;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.①说说你是怎样计算的②还有什么发现吗?

在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.

***教科书提供了一些多项式除以单项式的题目,鼓励学生利用已经学习过的内容独立解决这些问题.教学中仍应提倡算法多样化,让学生说明每一步的理由,并鼓励学生间的交流.学生可以类比数的除法把除以单项式看成是乘以这个单项式的倒数,也可以利用逆运算进行考虑.

归纳法则

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

你能把这句话写成公式的形式吗?

***这里重要的是学生能理解运算法则及其探索过程,能够运用自己的语言叙述如何进行运算,不必要求学生背诵法则.用字母概括法则是使算法一般化,可深化和发展对数的认识.

解决问题

教科书第192页例3  计算

(1)(12a3-6a2+3a)÷3a;

(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x

幂的运算性质是整式除法的关键,符号仍是运算中的重要问题.在此可由学生口答,要求学生说出式子每步变形的依据,并要求学生养成检验的习惯,利用乘除互为逆运算,检验商式的正确性.

***通过例题的剖析和解决,培养学生耐心细致、严谨的数学思维品质,训练学生形成一定的计算能力.

巩固新知教科书第192页练习利用投影仪反馈学生解题过程.

***本课课堂容量较大,可利用多媒体提高效率.

小结

回顾填写课堂评价表(见附页)

***评价表的填写,可以使学生全面地了解自己的学习过程,感受自己的成长与进步,这有利于培养学生的自信心,也为教师全面了解学生的学习状况、改进教学、实施因材施教提供了重要依据.

布置作业

试题详情

4..

试题详情

3.⑴4a2-2a+1;⑵-3xy2+5xy-y;⑶.

试题详情

2.⑴;⑵;⑶.

试题详情

1.⑴D;⑵B;⑶C .

试题详情

15.4.2整式的除法

同步训练

试题详情

5.=1,或-1,或3.

试题详情

4.100.

试题详情


同步练习册答案