3.如图,梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,试说明CD=BC-AD。
根据学生解题的实际情况及时反馈纠正。
2.填空。
如图,等腰梯形ABCD中,AD∥BC,∠B=60°,AB=8厘米,则
(1)∠C=( ),∠D=( ),CD=( )厘米。
(2)若BC=15厘米,则AD=( )厘米,梯形面积S=( )厘米2。
第2题 第3题
上面探索发现的结论经过推理都是正确的,今后我们可利用这些结论进行有关计算与证明。
1.判断。
(1)一组对边平行的四边形是梯形。 ( )
(2)一组对边平行且相等的四边形是梯形。 ( )
5.思考讨论
我们在探索证明的过程中,得到的解决梯形问题的一般方法是什么?
(板书。)梯形转化三角形和平行四边形。
4.等腰梯形的特征的发现及证明。
等腰梯形是我们常见的图形,利用它的特殊形状可以构造各种建筑模 型,设计各种图案,比如我们常用的梯子。下面观察演示一下等腰梯形具有哪些特征?
让学生先在硬纸片上画一个等腰梯形,再用剪刀剪下来,通过折叠、对比、演示,启发学生从腰、底角、对角线的对称性人手,寻求发现等腰梯形的特征,培养学生观察、分析、概括的能力。
让学生试述结论,教师适时用准备好的等腰梯形纸片进行演示并及时 补充完善结论。
等腰梯形的性质:
(1)两腰相等;(2)同一底上两角相等;(3)两条对角线相等;(4)轴对
称图形,对称轴是过两底中点的直线。
(性质(4),学生不易发现,应引导他们联系等腰三角形的轴对称性发现
结论并叙述。)
同学们经过努力,发现了上述结论,这些结论是否成立仅靠观察是不可靠的,需要用所学知识进行严密的推理论证。(教师应引导学生积极探求真理,激发学生的求知欲,由小组讨论、探索证明思路。教师启发点拔,怎样添加辅助线使梯形转化成已熟悉的三角形和平行四边形?通过启发引导学生利用转化思想解决问题。)
可让学生广开思路,任其发挥,教师根据学生的推理情况调控教学。对于结论(2)若学生运用转化思想,能找出证明思路,应给予充分的肯定和鼓励。由学生口述教师板书完整的证明过程;若不能的,引导学生做如下探索推证。
如图,梯形ABCD中,AD∥BC,AB=CD,请你说明∠B=∠C。
3.特殊梯形。
观察图(4)和图(5)的特点,找出它们与一般梯形的区别,引导得出直角梯形和等腰梯形的概念。由学生试述,教师根据回答情况及时更正并板书。 (板书。)一腰垂直于底的梯形叫做直角梯形。两腰相等的梯形叫做等腰梯形。特殊梯形直角梯形等腰梯形
思考讨论:若上面两个条件同时成立是否是梯形?
l.如图,梯形ABCD中,AD∥BC,上底是______下底是______,并作出高。
2.小组讨论。
(1)一组对边平行的四边形是梯形吗?
(2)一组对边平行且相等的四边形是梯形吗?
让学生观察图(3),并跟平行四边形的定义进行对比,引导学生试述梯形的概念,并结合图形说出梯形的底、腰及高。
(板书。)一组对边平行,另一组对边不平行的四边形叫做梯形。(或:只有一组对边平行的四边形叫做梯形。)
如图,梯形ABCD中,AD∥BC,其中AD是上底,BC是下底,AB、CD是腰,EF是高。
2.学生回答后在图(2)旁边标注“对边平行”,然后指向图(3),同图 (3)是什么四边形?学生回答后板书课题:梯形。
1.说出平行四边形的特征与其识别的方法。
观察图形。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com