新的课程标要求“让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流”。本节课采用教师为主导、学生为主体、练习为主线的教学策略,教师的作用主要体现在创设合适的问题情境,引导学生在课堂上发挥主观能动性,体现学生的主体地位,练习是学生学习数学知识和掌握数学能力的平台,因此把练习教学当成一节课的主线。
(二)教学目标
知识与技能:
1、掌握梯形、直角梯形、等腰梯形的有关概念;探索并掌握等腰梯形的性质。
2、通过把梯形问题转化为三角形或平行四边形的问题,体会数学的转化思想。
3、能运用梯形的性质进行相关计算和简单的说理。
过程与方法:
1、经历探索等腰梯形的性质过程,培养学生的动手操作能力、观察能力、说理意识,提高解决问题的能力。
2、经历探索把梯形问题转化为三角形和平形四边形问题,培养学生的创新意识,体会数学转化思想。
情感态度价值观:
在合作探索、自主学习的过程中,让学生体验数学学习活动充满探索性、创造性和趣味性,培养学生学习数学的热情和自信心。
重点:
1、梯形的性质及其应用。
2、会把梯形问题转化为三角形或平行四过形问题。
难点:
发展合情推理能力和主动探究习惯,提高说理的表达能力。
(四)小结
对于列方程解应用题,一定要善于把生活语言转化为数学语言,从中找出等量关系.对于我们常见的几种类型题我们要熟悉它们的基本关系式.
(三)课堂练习
课本P37 1.2
补充练习:
1.、乙分别从相距36千米的A、B两地同时相向而行.甲从A出发到1千米时发现有东西遗忘在A地,立即返回,取过东西后又立即从A向B行进,这样二人恰好在AB中点处相遇,又知甲比乙每小时多走0.5千米,求二人速度.
根据题意,得
解得 x=4.5.
经检验,x=4.5是这方程的解.
答:甲速度为5千米/小时,乙速度为4.5千米/小时.
(二)新课
例3.两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。哪个队的施工速度快?
分析:甲队一个月完成总工程的,设乙队如果单独施工1个月能完成总工程的,那么甲队半个月完成总工程的,乙队半个月完成总工程的,两队半个月完成总工程的+。
等量关系为:甲、乙两个工程总量=总工程量
则有++=1
(教师板书解答、检验过程)
例4:
从2004年5月起某列列车平均提速v千米/时。用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?
分析:这里的字母v,s表示已知数据,设提速前的平均速度为x千米/时,则
提速前列车行驶s千米所用的时间为小时,提速后列车的平均速度为(x+v)千米/时,提速后列车行驶(s+50)千米所用 的时间为小时。
等量关系:提速前行驶50千米所用的时间=提速后行驶(s+50)千米所用的时间
列方程得:
=
(教师板书解答、检验过程)
(一)复习提问
1.解分式方程的步骤
(1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;(4)验根.
2.列方程应用题的步骤是什么?
(1)审;(2)设;(3)列;(4)解;(5)答.
3.由学生讨论,我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么?
在学生讨论的基础上,教师归纳总结基本上有五种:
(1)行程问题:基本公式:路程=速度×时间
而行程问题中又分相遇问题、追及问题.
(2)数字问题
在数字问题中要掌握十进制数的表示法.
(3)工程问题
基本公式:工作量=工时×工效.
(4)顺水逆水问题
v顺水=v静水+v水.
v逆水=v静水-v水.
课本P35
化简,得
x+2=3
解得
x=1
检验:x=1时(x-1)(x+2)=0,1不是原分式方程的解,原分式方程无解.
例1 解方程
解:方程两边同乘x(x-3),得
2x=3x-9
解得 x=9
检验:x=9时 x(x-3)≠0,9是原分式方程的解.
例2 解方程
解:方程两边同乘(x-1)(x+2),得
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com