0  202935  202943  202949  202953  202959  202961  202965  202971  202973  202979  202985  202989  202991  202995  203001  203003  203009  203013  203015  203019  203021  203025  203027  203029  203030  203031  203033  203034  203035  203037  203039  203043  203045  203049  203051  203055  203061  203063  203069  203073  203075  203079  203085  203091  203093  203099  203103  203105  203111  203115  203121  203129  447090 

3. 总结一下怎样进行分式的加减法?

概括

同分母的分式相加减,分母不变,把分子相加减;

异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

试题详情

2. 试一试:

计算:(1);(2)                    

试题详情

1. 回忆:同分母的分数的加减法法则:

同分母的分数相加减,分母不变,把分子相加减.

试题详情

       分式的乘方

      分式的乘除法    约分   例

分式运算

              同分母

      分式的加减法       

               异分母    通分

试题详情

5. 将得到的结果化成最简分式(整式).

作业:课本2、3、4.

试题详情

4. 公分母保持积的形式,将各分子展开.

试题详情

3. 用公分母通分后,进行同分母分式的加减运算.

试题详情

2. 准确地得出各分式的分子、分母应乘的因式.

试题详情

   异分母分式的加减法步骤:

1. 正确地找出各分式的最简公分母.

求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的.取这些因式的积就是最简公分母.

试题详情

6.练习:计算

(1)        (2)

(3)(4)   复习分数的加减法法则类比引出异分母分式的加减法法则

试题详情


同步练习册答案