3.例1 解方程:.
解: 方程两边同乘以(x2-1),约去分母,得x+1=2.
解这个整式方程,得x=1.事实上,当x=1时,原分式方程左边和右边的分母(x-1)与(x2-1)都是0,方程中出现的两个分式都没有意义,因此,x=1不是原分式方程的根,应当舍去.所以原分式方程无解.
2.概 括
上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.
1、思 考 : 怎样解分式方程呢?
为了解决本问题,请同学们先思考并回答以下问题:
1)、回顾一下一元一次方程时是怎么去分母的,从中能否得到一点启发?
2)有没有办法可以去掉分式方程的分母把它转化为整式方程呢?
方程(1)可以解答如下:
方程两边同乘以(x+3)(x-3),约去分母,得80(x-3)=60(x+3).
解这个整式方程,得x=21.
所以轮船在静水中的速度为21千米/时
设轮船在静水中的速度为x千米/时,根据题意,得
方程(1)有何特点?
[概括] 方程(1)中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.
提问:你还能举出一个分式方程的例子吗?
辨析:判断下列各式哪个是分式方程.
(1) ; (2) ; (3) ; (4) ; (5)
根据定义可得:(1)、(2)是整式方程,(3)是分式,(4)(5)是分式方程. 学生观察分析后,发表意见,达成共识.学生举出分式方程的例子,根据分式方程的概念进行判定,加深对分式方程概念的理解.
问题:轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.
已知水流的速度是3千米/时,求轮船在静水中的速度.
读题、审题、设元、列方程,激发探究热情.
列分式方程解应用题的一般步骤:列方程解应用题注意分析题目中的数量,分清哪些是未知数,哪些是已知数,再找出这些数量间的关系,尽量找出多的数量关系,一般地,其中一个用来设立未知数,另一个用来立方程.
课本11、12、15.
例1 购一年期债券,到期后本利只获2700元,如果债券年利率12.5%,&127;那么利息是多少元?
解:(1)设利息为x元,则本金为(2700-x)元,依题意列分式方程为:
解此方程得 x=300
经检验x=300为原方程的根
答:利息为300元. 合作交流解法,学以致用.
[练习]一组学生乘汽车去春游,预计共需车费120元,后来人数增加了,费用仍不变,这样每人少摊3元,原来这组学生的人数是多少个?
本题是策略问题,应让学生合作交流解法.注意分类讨论思想.合作交流解法
例2:某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.5万元, 乙工程队工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用5天;
(3)若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成.
在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?
一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,
(1) 这个八年级的学生总数在什么范围内?
(2) 若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
2.(03苏州)为了绿化江山,某村计划在荒山上种植1200棵树,原计划每天种x棵,由于邻村的支援,每天比原计划多种了40棵,结果提前了5天完成了任务,则可以列出方程为( )
A) -=5 B)-=5
C)-=5 D)-=5
1复习练习
1.(02苏州)某农场挖一条960m长的渠道,开工后每天比原计划多挖20m,结果提前4天完成了任务.若设原计划每天挖xm,则根据题意可列出方程( )
A. B.
C. D.
13.已知x2+y2+6x-2y+10=0,求的值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com