用长20米的篱笆围成一个矩形,则矩形的面积S与它一边的长x的关系是什么?
指导:1.篱笆的长等于矩形的周长;2.S与x的关系式,即用x的代数式表示S;3.表示矩形的面积,需先表示矩形一组邻边的长。
解题过程略。
变式练习:
用20m的篱笆围成矩形,使矩形一边靠墙,另三边用篱笆围成,
1.写出矩形面积s(m?)与平行于墙的一边长x(m)的关系式;
3. 图象法:如问题1的气温曲线图
2. 列表法:问题2、3的表
在上述4个问题中有哪些相同点?有哪些不同点?
1. 解析法:如问题3、4等式
(二)自变量与函数概念的形成过程
1.举例、归纳
学生再次观察问题1、2、3、4两个变化过程,寻找共同之处:①一个变化过程,②两个变量,③一个量随另一个量的变化而变化。
若两个量满足上述三个条件,就说这两个量具有函数关系。(引出课题并板书)
设问:上述第三条是形象描述两个变量的关系,具体地说是什么意思?
以问题4说明:引导学生观察发现:对于变量r的每一个值,变量S都有唯一的值与它对应。所以两个变量的关系又可叙述为:对于一个变量的每一个值,另一个变量都有唯一的值与它对应。即一种对应关系。
在s=πr2中,s与r具有这种对应关系,就说r是自变量,S是r的函数。引出“自变量”、“函数”。
归纳自变量与函数的定义并板书。
在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。
一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
2.剖析概念
理解函数概念把握三点:①一个变化过程,②两个变量,③一种对应关系。判断两个量是否具有函数关系也以这三点为依据。
3.师生共同列举函数关系的例子。
(一)变量与常量概念的形成过程
1.举例、归纳
问题1:某地一天内的气温变化图( 示图)学生观察气温随时间变化的情况, 引出“变量”。
问题2: 学生观察随着存期x的增长,相应的年利率y是如何变化的过程,加深对变量的认识,引出“常量”。
设问:一个量变化,具体地说是它的什么在变?什么不变呢?
引导学生观察发现:是量的数值变与不变。
归纳变量与常量的定义并板书。
在其他二个问题中有哪些是变量?哪些是常量?
2.剖析概念
常量与变量必须存在于一个变化过程中。判断一个量是常量还是变量,需着两个方面:①看它是否在一个变化的过程中,②看它在这个变化过程中的取值情况。
问题1:图1是某地一天内的气温变化图.这张图告诉我们哪些信息?
看出回答:
(1) 这天的6时,10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.
(2) 这一天中,最高气温是多少?最低气温是多少?
(3) 这一天中,什么时候的气温在逐渐升高?什么时候的气温在逐渐降低?
思考:这张图是怎样来展示这天各时刻的温度和刻画这天的气温变化规律的?
问题2:银行对各种不同的存款方式都规定了相应的利率,下表是2004年7月中国工商银行为”整存整取”的存款方式规定的年利率.
存期x |
三月 |
六月 |
一年 |
二年 |
三年 |
五年 |
年利率y(%) |
1.710 |
1.890 |
1.980 |
2.250 |
2.520 |
2.790 |
观察上表,说一说随着存期x的增长,相应的年利率y是如何变化的?
问题3:收音机的刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对对应的数值:
波长l(m) |
300 |
500 |
600 |
1000 |
1500 |
频率f(kHz) |
1000 |
600 |
500 |
300 |
200 |
仔细的观察你能发现什么?
问题4:圆的面积是随着半径增大而增大的.如果用r表示圆的半径,S表示圆面积,则S与r之间满足什么关系?利用这个关系式,试求出半径为1cm,1.5cm,2cm,2.6cm,3.2cm时圆的面积,并将结果填入下表:
半径r(cm) |
1 |
1.5 |
2 |
2.6 |
3.2 |
… |
|
圆面积S(cm2) |
|
|
|
|
|
|
|
由此你可以得到什么结论?
课本第28页习题17.1第1、2题。
关于函数的定义的理解应注意两个方面,其一是变化过程中有且只有两个变量,其二是对于其中一个变量的每一个值,另一个变量都有惟一的值与它对应.对于实际问题,同学们应该能够根据题意写出两个变量的关系,即列出函数关系式。
课本第26页练习的第1、2,3题,
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com