0  203065  203073  203079  203083  203089  203091  203095  203101  203103  203109  203115  203119  203121  203125  203131  203133  203139  203143  203145  203149  203151  203155  203157  203159  203160  203161  203163  203164  203165  203167  203169  203173  203175  203179  203181  203185  203191  203193  203199  203203  203205  203209  203215  203221  203223  203229  203233  203235  203241  203245  203251  203259  447090 

   一次函数关系式ykx+b(k≠0),如果知道了kb的值,函数解析式就确定了,那么有怎样的条件才能求出kb呢?

问题1 已知一个一次函数当自变量x=-2时,函数值y=-1,当x=3时,y=-3.能否写出这个一次函数的解析式呢?

根据一次函数的定义,可以设这个一次函数为:ykx+b(k≠0),问题就归结为如何求出kb的值.

由已知条件x=-2时,y=-1,得  -1=-2k+b

由已知条件x=3时,y=-3, 得  -3=3k+b

两个条件都要满足,即解关于x的二元一次方程

     解得

所以,一次函数解析式为

问题2 已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式.

考虑 这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时,弹簧的长度7.2厘米,与一次函数关系式中的两个xy有什么关系?

试题详情

5.某个一次函数的图象位置大致如下图所示,试分别确定kb的符号,并说出函数的性质.

试题详情

4.已知点(-1,a)和都在直线上,试比较ab的大小.你能想出几种判断的方法?

试题详情

3.已知函数.

(1)当m取何值时,yx的增大而增大?

(2)当m取何值时,yx的增大而减小?

试题详情

2.已知关于x的一次函数y=(-2m+1)x+2m2+m-3.

(1)若一次函数为正比例函数,且图象经过第一、第三象限,求m的值;

(2)若一次函数的图象经过点(1,-2),求m的值.

试题详情

1.已知函数,当m为何值时,这个函数是一次函数.并且图象经过第二、三、四象限?

试题详情

2.k>0,b>0时,直线经过一、二、三象限;k>0,b<0时,直线经过一、三、四象限;

k<0,b>0时,直线经过一、二、四象限;k<0,b<0时,直线经过二、三、四象限.

试题详情

1.(1)当k>0时,yx的增大而增大,这时函数的图象从左到右上升;

(2)当k<0时,yx的增大而减小,这时函数的图象从左到右下降.

b>0,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴;当b=0时,直线与y轴交于坐标原点.

试题详情

例1 已知一次函数y=(2m-1)x+m+5,当m是什么数时,函数值yx的增大而减小?

分析 一次函数ykx+b(k≠0),若k<0,则yx的增大而减小.

解 因为一次函数y=(2m-1)x+m+5,函数值yx的增大而减小.

所以,2m-1<0,即.

例2 已知一次函数y=(1-2m)x+m-1,若函数yx的增大而减小,并且函数的图象经过二、三、四象限,求m的取值范围.

分析 一次函数ykx+b(k≠0),若函数yx的增大而减小,则k<0,若函数的图象经过二、三、四象限,则k<0,b<0.

解 由题意得: ,

  解得,

例3 已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且yx的增大而减小,其中m为整数.

(1)求m的值;(2)当x取何值时,0<y<4?

分析 一次函数ykx+b(k≠0)与y轴的交点坐标是(0,b),而交点在x轴下方,则b<0,而yx的增大而减小,则k<0.

解 (1)由题意得:

解之得,,又因为m为整数,所以m=2.

(2)当m=2时,y=-2x-1.

又由于0<y<4.所以0<-2x-1<4.

解得:.

例4 画出函数y=-2x+2的图象,结合图象回答下列问题:

(1)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?

(2)当x取何值时,y=0?

(3)当x取何值时,y>0?

分析 (1)由于k=-2<0,y随着x的增大而减小.

(2) y=0,即图象上纵坐标为0的点,所以这个点在x轴上.

(3) y>0,即图象上纵坐标为正的点,这些点在x轴的上方.

解 (1)由于k=-2<0,所以随着x的增大,y将减小. 当一个点在直线上从左向右移动时,点的位置也在逐步从高到低变化,即图象从左到右呈下降趋势.

(2)当x=1时, y=0 .

(3)当x<1时, y>0.

试题详情

4.利用上面的性质,我们来看问题1和问题2反映了怎样的实际意义?

问题1 随着时间的增长,小明离北京越来越近.

问题2 随着时间的增长,小张的存款越来越多.

试题详情


同步练习册答案