0  203107  203115  203121  203125  203131  203133  203137  203143  203145  203151  203157  203161  203163  203167  203173  203175  203181  203185  203187  203191  203193  203197  203199  203201  203202  203203  203205  203206  203207  203209  203211  203215  203217  203221  203223  203227  203233  203235  203241  203245  203247  203251  203257  203263  203265  203271  203275  203277  203283  203287  203293  203301  447090 

  本节课的教学设计能较充分体现 “以学生的发展为本” 的教育理念,借助多媒体手段提高课堂教学效率, 激发学生的学习兴趣,能充分调动学生学习的主观能动性,有效的解决了教材重点和难点两大问题,达到了预期的教学目的,同时教师给学生提供充分的活动空间和思维空间,在开放、多样、交互的教学活动中,培养学生自主、合作、互动的能力,培养学生对数学的兴趣和爱好。较好地体现了新课程标准及素质教育的精神。

试题详情

3. 3. 软件flash在教学中的应用:在引入我国古代两种证法;“赵爽弦图”、刘徽的“青朱出入图” 时,需要通过拼图的变化说明勾股定理结论,在传统教学时教师是很难说清楚原理的,而利用信息技术的flash动画演示割补面积的效果、再配合教师解说则能使学生通过屏幕中动态变化的过程很快理解原理,此方式使学生对该定理的理解与掌握反而比传统教学要深刻得多。充分调动了学生的积极性、主动性,能更好、更快地掌握教学中的知识点. 

试题详情

2.软件几何画板在教学中的应用:在以往的数学教学中,教师往往只强调“定理证明”这一教学环节,而不太考虑学生直接的感性经验和直觉思维致使学生难以理解几何的概念与几何的逻辑。而通过几何画板做“数学实验”,让每一个学生利用“几何画板”作一个动态变化的直角三角形,通过度量各边长所在的正方形的面积值并进行比较,学生对直角三角形三边关系产生很感性的认识;从而加深了对勾股定理的理解和应用。在此过程中,学生通过计算机从“听数学”转变为“做数学”,学生从中可以直观而自然地概括出勾股定理的内容,并不需要由老师像传统教学中那样滔滔不绝地讲解,这样,在信息化环境下学生从传统的被动接受、机械训练中解脱出来,极大调动了学生学习的主观能动性。

试题详情

1. 充分发挥网络资源优势:坚持预习可以帮助学生提前思考、提高课堂效率,因此,在讲授勾股定理这节课之前,我就布置了上网查找勾股定理的证明方法及应用的课外作业,然后整理下来,交给老师,学生在上网查找的过程中,可以接触到许多与勾股定理有关的知识,这样既激发了学生的学习兴趣、拓宽学生的知识面,培养了他们的思维能力,又锻炼了动手能力,充分体现了学生自主探索并自由建构的过程,符合新课标理念。

试题详情

动手操作证明定理,应用知识回归生活,总结升华推荐作业。

在创设情境以古引新这一环节,我由故事引入了商高定理的由来,这样引起学生学习兴趣,激发学生求知欲。然后出示问题:是不是所有的直角三角形都有这个性质呢?问题的设计有一定的挑战性,目的是激发学生的探究欲望,使学生进入乐学状态。

在提出问题发现探索这一环节,由古希腊著名数学家毕达哥拉斯从朋友家的地砖铺成的地面上发现了直角三角形的某种特性开始,提出问题,首先让学生用数方格的方法初步感知等腰直角三角形斜边直角边的联系,然后用“割补法”推导一般直角三角形斜边、直角边关系的公式即勾股定理的过程,最后通过几何画板做实验得出勾股定理的结论。

在动手操作证明定理这一环节中,我给出了这样一个题目:运用四个全等的直角三角形,你能否拼出一些以直角三角形的斜边为边长的正方形吗?利用各自的拼图,探索出a2+b2=c2正确性的方法,进一步归纳出勾股定理。从而自然地引出了我国古代两种证法。

勾股定理的证明采用多种方法,目的是向学生传播厚重的数学文化,让学生由了解走向喜欢。另外,在勾股定理的探究证明的过程中,向学生渗透数形结合的数学思想及由特殊到一般的探究问题的方法。对教学难点采用割补面积法进行突破。

而应用知识回归生活这一环节通过解决几个实际生活中的问题,反映了数学来源与生活,学习数学知识是为了更好服务于生活,通过解决实际问题加深了对勾股定理的理解,提高了学生应有数学的能力。

在总结升华推荐作业这一环节中,总结升华可以帮助学生理清知识脉络,对所学知识进一步回味、消化,由感性上升到理性,增强信心,提高兴趣。推荐作业的完成又能帮助学生对所学知识得到进一步延伸。

板书设计也力求遵循力求遵循“教为主导,学为主体”的教学理念

试题详情

这种教学理念紧随新课改理念,也反映了时代精神。 同时鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。”授之以鱼,不如授之以渔”这才是中学教育的真正目标.

试题详情

3.如图,点P是直线与双曲线在第一象限内的一个交点,直线x轴、y轴的交点分别为AC,过PPB垂直于x轴于B,若AB+PB=9.

(1)求k的值;(2)求△PBC的面积.

试题详情

2.已知关于x的一次函数y=mx+3n和反比例函数图象都经过点(1,-2),求这个一次函数与反比例函数的解析式.

试题详情

1.已知一次函数ykx+b的图象过点A(0,1)和点B(a,-3a)(a>0),且点B在反比例函数的图象上,求a及一次函数式.

试题详情

2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.

试题详情


同步练习册答案