备课资料
参考例题
例1:用分解因式法解下列方程:
(1)(2x-5)2-2x+5=0;
(2)4(2x-1)2=9(x+4)2.
分析:方程(1)的左边化为以(2x-5)为整体的形式,然后利用提取公因式来分解因式;方程(2)先移项,然后将(2x-1)和(x+4)看作整体,利用平方差公式分解因式.
解:(1)方程化为(2x-5)2-(2x-5)=0,
(2x-5)[(2x-5)-1]=0.
∴2x-5=0或(2x-5)-1=0.
∴x1=,x2=3.
(2)方程化为
4(2x-1)2-9(x+4)2=0,
[2(2x-1)+3(x+4)][2(2x-1)-3(x+4)]=0.
∴2(2x-1)+3(x+4)=0,
2(2x-1)-3(x+4)=0.
∴x1=- ,x2=14.
例:解下列方程;
(1)5x2=4x;
(2)x-2=x(x-2).
解:由方程x2=3x得
x2-3x=0,
即x(x-3)=0.
于是x=0或x-3=0.
因此,x1=0,x2=3.
所以这个数是0或3.
P62 习题2.7 1、2
(1)在一元二次方程的一边为0,而另一边易于分解成两个一次因式时,就可用分解因式法来解。
(2)分解因式时,用公式法提公式因式法
练习:P62 随堂练习 1、2
4、想一想
你能用分解因式法简单方程 x2-4=0
(x+1)2-25=0吗?
解:x2-4=0 (x+1)2-25=0
x2-22=0 (x+1)2-52=0
(x+2)(x-2)=0 (x+1+5)(x+1-5)=0
x+2=0或x-2=0 x+6=0或x-4=0
∴x1=-2, x2=2 ∴x1=-6 , x2=4
3、例题讲析:
例:解下列方程:
(1) 5x2=4x (2) x-2=x(x-2)
解:(1)原方程可变形为:
5x2-4x=0
x(5x-4)=0
x=0或5x=4=0
∴x1=0或x2=
(2)原方程可变形为
x-2-x(x-2)=0
(x-2)(1-x)=0
x-2=0或1-x=0
∴x1=2,x2=1
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com