【评析】
实践证明,急于列式解题而忽略过程分析必然要犯经验主义的错误。分析好大有益。
例12 如图10-20所示,一块铜块左右两面接入电路中。有电流I自左向右流过铜块,当一磁感应强度为B的匀强磁场垂直前表面穿入铜块,从后表面垂直穿出时,在铜块上、下两面之间产生电势差,若铜块前、后两面间距为d,上、下两面间距为l。铜块单位体积内的自由电子数为n,电子电量为e,求铜板上、下两面之间的电势差U为多少?并说明哪个面的电势高。
【错解】
碰撞前,粒子做匀速运动,Eq=μ(mg+Bqv)。返回时无电场力作用仍做匀速运动,水平方向无外力,竖直方向N=Bgv+mg。因为水平方向无摩擦,可知N=0,Bqv=-mg。解得E=0。
【错解原因】
错解中有两个错误:返回时,速度反向,洛仑兹力也应该改变方向。返回时速度大小应为原速度的一半。
【分析解答】
碰撞前,粒子做匀速运动, Eq=μ(mg+Bqv)。返回时无电场力作用仍做匀速运动,水平方向无外力,摩擦力f=0,所以N=0竖直方向上有Bgv
子速度v,回旋半径R无关。因此上、下两半圆弧粒子通过所需时间相等。动能的损耗导致粒子的速度的减小,结果使得回旋半径按比例减小,周期并不改变。
【评析】
回旋加速器的过程恰好与本题所述过程相反。回旋加速器中粒子不断地被加速,但是粒子在磁场中的圆周运动周期不变。
例11 如图10-19所示,空中有水平向右的匀强电场和垂直于纸面向外的匀强磁场,质量为m,带电量为+q的滑块沿水平向右做匀速直线运动,滑块和水平面间的动摩擦因数为μ,滑块与墙碰撞后速度为原来的一半。滑块返回时,去掉了电场,恰好也做匀速直线运动,求原来电场强度的大小。
【分析解答】
首先根据洛仑兹力方向,(指向圆心),磁场方向以及动能损耗情况,判定粒子带正电,沿abcde方向运动。
再求通过上、下两段圆弧所需时间:带电粒子在磁场中做匀速圆周运动
的回旋周期与回旋半径成正比,因为上半部分径迹的半径较大,所以所需时间较长。
【错解原因】
错误地认为带电粒子在磁场中做圆周运动的速度不变,由周期公式
【错解】
【错析】
由于洛伦兹力总是垂直于速度方向,若已知带电粒子的任意两个速度方向,就可以通过作出两速度的垂线,找出两垂线的交点即为带电粒子做圆周运动的圆心。
例10 如图10-18所示,带电粒子在真空环境中的匀强磁场里按图示径迹运动。径迹为互相衔接的两段半径不等的半圆弧,中间是一块薄金属片,粒子穿过时有动能损失。试判断粒子在上、下两段半圆径迹中哪段所需时间较长?(粒子重力不计)
带电粒子在磁场中做匀速圆周运动
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com