3、列方程的关键是什么?(找等量关系)
2、列方程解应用题的三个重要环节是什么?
1、黄金分割中的黄金比是多少? [ 准确数为,近似数为0.618 ]
2、通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。
教学重点、难点:列一元一次方程解应用题,找出等量关系列方程。
教学程序:
为什么是0.618(第二课时)
教学目标:
1、分析具体问题中的数量关系,列出一元二次方程;
3、正确求解方程并检验解的合理性。
2、把握问题中的等量关系;
1、整体地,系统地审清问题;
2、例题讲析:
例1:P64 题略(幻灯片)
(1)小岛D和小岛F相距多少海里?
(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)
解:(1)连接DF,则DF⊥BC,
∵AB⊥BC,AB=BC=200海里
∴AC=AB=200海里,∠C=45°
∴CD=AC=100海里 DF=CF,DF=CD
∴DF=CF=CD=×100=100海里
所以,小岛D和小岛F相距100海里。
(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里
EF=AB+BC―(AB+BE)―CF=(300―2x)海里
在Rt△DEF中,根据勾股定理可得方程:x2=1002+(300-2x)2
整理得,3x2-1200x+100000=0
解这个方程,得:x1=200-≈118.4
x2=200+(不合题意,舍去)
所以,相遇时,补给船大约航行了118.4 海里。
1、黄金比的来历
如图,如果=,那么点C叫做线段AB的黄金分割点。
由=,得AC2=AB·CB
设AB=1, AC=x ,则CB=1-x
∴x2=1×(1-x) 即:x2+x-1=0
解这个方程,得
x1= , x2=(不合题意,舍去)
所以:黄金比=≈0.618
注意:黄金比的准确数为,近似数为0.618.
上面我们应用一元二次方程解决了求黄金比的问题,其实,很多实际问题都可以应用一元二次方程来解决。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com