4、(08浙江丽水)24.如图,在平面直角坐标系中,已知点坐标为(2,4),直线与轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点到点时停止移动.
(1)求线段所在直线的函数解析式;
(2)设抛物线顶点的横坐标为,
①用的代数式表示点的坐标;
②当为何值时,线段最短;
(3)当线段最短时,相应的抛物线上是否存在点,使△
的面积与△的面积相等,若存在,请求出点的坐标;若
不存在,请说明理由.
(08浙江丽水24题解析)24.(本题14分)
解:(1)设所在直线的函数解析式为,
∵(2,4),
∴, ,
∴所在直线的函数解析式为.…………………………………(3分)
(2)①∵顶点M的横坐标为,且在线段上移动,
∴(0≤≤2).∴顶点的坐标为(,).∴抛物线函数解析式为.
∴当时,(0≤≤2).
∴点的坐标是(2,).…………………………………(3分)
② ∵==, 又∵0≤≤2,
∴当时,PB最短. ……………………………………………(3分)
(3)当线段最短时,此时抛物线的解析式为.……………(1分)
假设在抛物线上存在点,使.
设点的坐标为(,).
①当点落在直线的下方时,过作直线//,交轴于点,
∵,,∴,∴,∴点的坐标是(0,).
∵点的坐标是(2,3),∴直线的函数解析式为.
∵,∴点落在直线上.
∴=.
解得,即点(2,3).
∴点与点重合.
∴此时抛物线上不存在点,使△与
△的面积相等.………………………(2分)
②当点落在直线的上方时,作点关于点的对称称点,过作直线//,交轴于点,
∵,∴,∴、的坐标分别是(0,1),(2,5),
∴直线函数解析式为.
∵,∴点落在直线上.∴=.
解得:,.代入,得,.
∴此时抛物线上存在点,
使△与△的面积相等. …………………………………(2分)
综上所述,抛物线上存在点,
使△与△的面积相等.
3.(08浙江杭州24) 在直角坐标系xOy中,设点A(0,t),点Q(t,b)。平移二次函数的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B,C两点(∣OB∣<∣OC∣),连结A,B。
(1)是否存在这样的抛物线F,使得?请你作出判断,并说明理由;
(2)如果AQ∥BC,且tan∠ABO=,求抛物线F对应的二次函数的解析式。
(08浙江杭州24题解析)∵ 平移的图象得到的抛物线的顶点为,
∴ 抛物线对应的解析式为:. --- 2分
∵ 抛物线与x轴有两个交点,∴. --- 1分
令, 得,,
∴ )( )| ,
即, 所以当时, 存在抛物线使得.-- 2分
(2) ∵, ∴ , 得: ,
解得. --- 1分
在中,
1) 当时,由 , 得,
当时, 由, 解得,
此时, 二次函数解析式为; --- 2分
当时, 由, 解得,
此时,二次函数解析式为 + +. --- 2分
2) 当时, 由 , 将代, 可得, ,
(也可由代,代得到)
所以二次函数解析式为 + –或. --- 2分.
2. (08广东肇庆25题)(本小题满分10分)
已知点A(a,)、B(2a,y)、C(3a,y)都在抛物线上.
(1)求抛物线与x轴的交点坐标;(2)当a=1时,求△ABC的面积;
(3)是否存在含有、y、y,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.
(08广东肇庆25题解析)(本小题满分10分)
解:(1)由5=0,(1分)得,.(2分)∴抛物线与x轴的交点坐标为(0,0)、(,0). (3分)(2)当a=1时,得A(1,17)、B(2,44)、C(3,81),·························· (4分)
分别过点A、B、C作x轴的垂线,垂足分别为D、E、F,则有
=S - - =--······ =5(个单位面积)
(3)如:.事实上, =45a2+36a.
3()=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a.·············· (9分)
∴. ···················································································· (10分)
1.(08天津市卷26题)
已知抛物线,
(Ⅰ)若,,求该抛物线与轴公共点的坐标;
(Ⅱ)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;
(Ⅲ)若,且时,对应的;时,对应的,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
(08天津市卷26题解析)解(Ⅰ)当,时,抛物线为,
方程的两个根为,. ∴该抛物线与轴公共点的坐标是和. 2分
(Ⅱ)当时,抛物线为,且与轴有公共点.
对于方程,判别式≥0,有≤. ········································ 3分
①当时,由方程,解得.
此时抛物线为与轴只有一个公共点.································· 4分
②当时, 时,,时,.
由已知时,该抛物线与轴有且只有一个公共点,考虑其对称轴为,
应有 即解得.
综上,或. ················································································ 6分
(Ⅲ)对于二次函数,
由已知时,;时,,
又,∴.
于是.而,∴,即.∴. 7分
∵关于的一元二次方程的判别式,
∴抛物线与轴有两个公共点,顶点在轴下方.····························· 8分
又该抛物线的对称轴,
由,,,
得,
∴.
又由已知时,;时,,观察图象,
可知在范围内,该抛物线与轴有两个公共点. ············································ 10分
28、(10分)如图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点.
(1)求点的坐标;
(2)求直线的解析表达式;
(3)求的面积;
(4)在直线上存在异于点的另一点,使得
与的面积相等,请直接写出点的坐标.
5.00元/升,问为何值时,走哪条线路的总费用较少(总费用=过路费+油耗费);
(3)据杭州湾跨海大桥管理部门统计:从宁波经跨 海大桥到上海的小车中,其中五类不同油耗的小车平均每小时通过的车辆数,得到如图所示的频数分布直方图,请你估算1天内这五类小车走直路比走弯路共节省多少升汽油.
27、(10分)为了促进长三角区域的便捷沟通,实现节时、节能,杭州湾跨海大桥于今年5月1日通车,下表是宁波到上海两条线路的有关数据:
线路 |
弯路(宁波-杭州-上海) |
直路(宁波-跨海大桥-上海) |
路程 |
316公里 |
196公里 |
过路费 |
140元 |
180元 |
(1)若小车的平均速度为80公里/小时,则小车走直路比走弯路节省多少时间?
(2)若小车每公里的油耗为升,汽油价格为
26、(10分)如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、
H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点.
(1)求证:四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长.
图6
25、(10分)已知直线与轴的负半轴交于点,直线与轴交于点,与 轴交于点,(是坐标原点),两条直线交于点.
(1)求的值及点的坐标;
(2)求四边形的面积.
24、(10分)2008年8月8日,第29届奥运会将在北京举行.现在,奥运会门票已在世界各地开始销售,下图是奥运会部分项目的门票价格:
(1)从以上统计图可知,同一项目门票价格相差很大,分别求出篮球项目门票价格的极差和跳水项目门票价格的极差.
(2)求出这6个奥运会项目门票最高价的平均数、中位数和众数.
(3)田径比赛将在国家体育场“鸟巢”进行,“鸟巢”内共有观众座位9.1万个.从安全角度考虑,正式比赛时将留出0.6万个座位.某场田径赛,组委会决定向奥运赞助商和相关部门赠送还1.5万张门票,其余门票全部售出.若售出的门票中最高价门票占10%至15%,其他门票的平均价格是300元,你估计这场比赛售出的门票收入约是多少万元?请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com