6.(2008湖北鄂州)下列方程中,有两个不等实数根的是( )
A. B.
C. D.
答案:D
5.(2008湖北黄石)已知是关于的一元二次方程的两实数根,则式子的值是( )
A. B. C. D.
答案:D
4.(2008年江苏省南通市)设、是关于x的一元二次方程的两个实数根,且<0,-3<0,则( )
A. B. C. D.
答案:B
3.(2008年大庆市)已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是( )
A. B. C. D.
答案:D
2.(2008年山东省潍坊市)已知反比例函数,当x>0时,y随x的增大而增大,则关于x的方程的根的情况是( )
A.有两个正根 B.有两个负根 C.有一个正根一个负根 D.没有实数根
答案:C
1.(2008山东威海)关于x的一元二次方程的根的情况是
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
答案:A
8、(四川自贡)抛物线的顶点为M,与轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b.若关
于的一元二次方程有两个相等的实数根.
(1)判断△ABM的形状,并说明理由.
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大
致图形.
(3)若平行于轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与轴相切,
求该圆的圆心坐标.
(1)令,得
由勾股定理的逆定理和抛物线的对称性知△ABM是一个以、为直角边的等腰直角三角形
(2)设
∵△ABM是等腰直角三角形
∴斜边上的中线等于斜边的一半
|
|
|
|
∴A(-3,0),B(-1,0)
将B(-1,0) 代入中得
∴抛物线的解析式为,即
(3)设平行于轴的直线为
解方程组
得, (
∴线段CD的长为
∵以CD为直径的圆与轴相切
据题意得
∴
解得
∴圆心坐标为和
7、(江西省)已知:如图所示的两条抛物线的解析式分别是,(其中为常数,且).
(1)请写出三条与上述抛物线有关的不同类型的结论;
(2)当时,设与轴分别交于两点(在的左边),
与轴分别交于两点(在的左边),观察四点坐标,请写出一个你所得到的正确结论,并说明理由;
(3)设上述两条抛物线相交于两点,直线都垂直于轴,分别经过两点,在直线之间,且与两条抛物线分别交于两点,求线段的最大值.
(1)解:答案不唯一,只要合理均可.例如:
①抛物线开口向下,或抛物线开口向上;
②抛物线的对称轴是,或抛物线的对称轴是;
③抛物线经过点,或抛物线经过点;
④抛物线与的形状相同,但开口方向相反;
⑤抛物线与都与轴有两个交点;
⑥抛物线经过点或抛物线经过点;
等等.
(2)当时,,令,
解得.
,令,解得.
①点与点对称,点与点对称;
②四点横坐标的代数和为0;
③(或).
(3),
抛物线开口向下,抛物线开口向上.
根据题意,得.
当时,的最大值是2.
6、(广西南宁)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图①所示;种植花卉的利润与投资量成二次函数关系,如图②所示(注:利润与投资量的单位:万元)
(1)分别求出利润与关于投资量的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?
解:(1)设=,由图①所示,函数=的图像过(1,2),所以2=,
故利润关于投资量的函数关系式是=;
因为该抛物线的顶点是原点,所以设=,由图12-②所示,函数=的图像过(2,2),
所以,
故利润关于投资量的函数关系式是;
(2)设这位专业户投入种植花卉万元(),
则投入种植树木()万元,他获得的利润是万元,根据题意,得
=+==
当时,的最小值是14;
因为,所以
所以
所以
所以,即,此时
当时,的最大值是32.
5、(吉林长春)已知两个关于的二次函数与当时,;且二次函数的图象的对称轴是直线.
(1)求的值;
(2)求函数的表达式;
(3)在同一直角坐标系内,问函数的图象与的图象是否有交点?请说明理由.
解:(1)由
得.
又因为当时,,即,
解得,或(舍去),故的值为.
(2)由,得,
所以函数的图象的对称轴为,
于是,有,解得,
所以.
(3)由,得函数的图象为抛物线,其开口向下,顶点坐标为;
由,得函数的图象为抛物线,其开口向上,顶点坐标为;
故在同一直角坐标系内,函数的图象与的图象没有交点.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com