0  204003  204011  204017  204021  204027  204029  204033  204039  204041  204047  204053  204057  204059  204063  204069  204071  204077  204081  204083  204087  204089  204093  204095  204097  204098  204099  204101  204102  204103  204105  204107  204111  204113  204117  204119  204123  204129  204131  204137  204141  204143  204147  204153  204159  204161  204167  204171  204173  204179  204183  204189  204197  447090 

95.(08山东聊城25题)25.(本题满分12分)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).

 

(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?

(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;

(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.

(08山东聊城25题解答)(本题满分12分)

解:(1)设正方形的边长为cm,则

.······················································································ 1分

解得(不合题意,舍去),

剪去的正方形的边长为1cm.······································································ 3分

(注:通过观察、验证直接写出正确结果给3分)

(2)有侧面积最大的情况.

设正方形的边长为cm,盒子的侧面积为cm2

的函数关系式为:

.···························································································· 5分

改写为

时,

即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.   7分

(3)有侧面积最大的情况.

设正方形的边长为cm,盒子的侧面积为cm2

若按图1所示的方法剪折,则的函数关系式为:

时,.························· 9分

若按图2所示的方法剪折,则的函数关系式为:

时,.············································································· 11分

比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2

说明:解答题各小题只给了一种解答及评分说明,其他解法只要步骤合理,解答正确,均应给出相应分数.

试题详情

94.(08广东梅州23题)23.本题满分11分.

如图11所示,在梯形ABCD中,已知ABCDADDBAD=DC=CBAB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.

(1)求∠DAB的度数及ADC三点的坐标;

(2)求过ADC三点的抛物线的解析式及其对称轴L

(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

(08广东梅州23题解答)解: (1) DCABAD=DC=CB

 ∠CDB=∠CBD=∠DBA,······································································· 0.5分

   ∠DAB=∠CBADAB=2∠DBA, ·· 1分

DAB+∠DBA=90DAB=60, 1.5分

  ∠DBA=30AB=4, DC=AD=2,  2分

RtAODOA=1,OD=,··················· 2.5分

A(-1,0),D(0, ),C(2, ).  4分

(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B(3,0),

故可设所求为  = (+1)( -3) ···················································· 6分

将点D(0, )的坐标代入上式得, =

所求抛物线的解析式为  =   ································· 7分

其对称轴L为直线=1.·············································································· 8分

(3) PDB为等腰三角形,有以下三种情况:

①因直线LDB不平行,DB的垂直平分线与L仅有一个交点P1P1D=P1B

P1DB为等腰三角形;  ·········································································· 9分

②因为以D为圆心,DB为半径的圆与直线L有两个交点P2P3DB=DP2DB=DP3P2DBP3DB为等腰三角形;

③与②同理,L上也有两个点P4P5,使得 BD=BP4BD=BP5.  ····· 10分

由于以上各点互不重合,所以在直线L上,使PDB为等腰三角形的点P有5个.

试题详情

93.(08福建南平26题)26.(14分)

(1)如图1,图2,图3,在中,分别以为边,向外作正三角形,正四边形,正五边形,相交于点

①如图1,求证:

②探究:如图1,    

如图2,    

如图3,    

(2)如图4,已知:是以为边向外所作正边形的一组邻边;是以为边向外所作正边形的一组邻边.的延长相交于点

①猜想:如图4,     (用含的式子表示);

②根据图4证明你的猜想.

(08福建南平26题解答)(1)①证法一:均为等边三角形,

······················································································ 2分

············································· 3分

······················································ 4分

.················································ 5分

证法二:均为等边三角形,

······················································································ 2分

····················································································· 3分

可由绕着点按顺时针方向旋转得到·························· 4分

.························································································· 5分

.································································· 8分(每空1分)

(2)①···································································································· 10分

②证法一:依题意,知都是正边形的内角,

,即.························· 11分

.······················································································· 12分

··· 13分

······································ 14分

证法二:同上可证  .···················································· 12分

,如图,延长

······························ 13分

··············· 14分

证法三:同上可证  .···················································· 12分

······················································ 13分

······································································ 14分

证法四:同上可证  .···················································· 12分

.如图,连接

.·································· 13分

····························· 14分

注意:此题还有其它证法,可相应评分.

试题详情

92.(08四川资阳24题)24.(本小题满分12分)

如图10,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.

(1)求抛物线的解析式;

(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;

(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.

(08四川资阳24题解答)(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,

∴∠OCA+∠OCB=90°,

又∵∠OCB+∠OBC=90°,

∴∠OCA=∠OBC,

又∵∠AOC= ∠COB=90°,

∴ΔAOC∽ ΔCOB,·················································································· 1分

又∵A(–1,0),B(9,0),

,解得OC=3(负值舍去).

∴C(0,–3),

····················································································································· 3分

设抛物线解析式为y=a(x+1)(x–9),

∴–3=a(0+1)(0–9),解得a=

∴二次函数的解析式为y=(x+1)(x–9),即y=x2x–3.·················· 4分

(2) ∵AB为O′的直径,且A(–1,0),B(9,0),

∴OO′=4,O′(4,0),················································································ 5分

∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,

∴∠BCD=∠BCE=×90°=45°,

连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=AB=5.

∴D(4,–5).······························································································ 6分

∴设直线BD的解析式为y=kx+b(k≠0)

························································· 7分

解得

∴直线BD的解析式为y=x–9.······························ 8分

(3) 假设在抛物线上存在点P,使得∠PDB=∠CBD,

解法一:设射线DP交⊙O′于点Q,则

分两种情况(如答案图1所示):

①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).

∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合,

因此,点Q1(7,–4)符合

∵D(4,–5),Q1(7,–4),

∴用待定系数法可求出直线DQ1解析式为y=x–.························ 9分

解方程组

∴点P1坐标为(),[坐标为()不符合题意,舍去].

····················································································································· 10分

②∵Q1(7,–4),

∴点Q1关于x轴对称的点的坐标为Q2(7,4)也符合

∵D(4,–5),Q2(7,4).

∴用待定系数法可求出直线DQ2解析式为y=3x–17.·························· 11分

解方程组

∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].

····················································································································· 12分

∴符合条件的点P有两个:P1(),P2(14,25).

解法二:分两种情况(如答案图2所示):

①当DP1∥CB时,能使∠PDB=∠CBD.

∵B(9,0),C(0,–3).

∴用待定系数法可求出直线BC解析式为y=x–3.

又∵DP1∥CB,∴设直线DP1的解析式为y=x+n.

把D(4,–5)代入可求n= –

∴直线DP1解析式为y=x–.·················· 9分

解方程组

∴点P1坐标为(),[坐标为()不符合题意,舍去].

····················································································································· 10分

②在线段O′B上取一点N,使BN=DM时,得ΔNBD≌ΔMDB(SAS),∴∠NDB=∠CBD.

由①知,直线BC解析式为y=x–3.

取x=4,得y= –,∴M(4,–),∴O′N=O′M=,∴N(,0),

又∵D(4,–5),

∴直线DN解析式为y=3x–17.······························································· 11分

解方程组

∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].

····················································································································· 12分

∴符合条件的点P有两个:P1(),P2(14,25).

解法三:分两种情况(如答案图3所示):

①求点P1坐标同解法二.········································································ 10分

②过C点作BD的平行线,交圆O′于G,

此时,∠GDB=∠GCB=∠CBD.

由(2)题知直线BD的解析式为y=x–9,

又∵ C(0,–3)

∴可求得CG的解析式为y=x–3,

设G(m,m–3),作GH⊥x轴交与x轴与H,

连结O′G,在Rt△O′GH中,利用勾股定理可得,m=7,

由D(4,–5)与G(7,4)可得,

DG的解析式为,······································································ 11分

解方程组

∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].··········· 12分

∴符合条件的点P有两个:P1(),P2(14,25).

说明:本题解法较多,如有不同的正确解法,请按此步骤给分.

试题详情

24.解:(1)解法1:根据题意可得:A(-1,0),B(3,0);

则设抛物线的解析式为(a≠0)

又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1

 ∴y=x2-2x-3······························································································· 3分

自变量范围:-1≤x≤3··········································································· 4分

      解法2:设抛物线的解析式为(a≠0)

       根据题意可知,A(-1,0),B(3,0),D(0,-3)三点都在抛物线上

,解之得:

y=x2-2x-3······························································································· 3分

自变量范围:-1≤x≤3················································· 4分

      (2)设经过点C“蛋圆”的切线CEx轴于点E,连结CM

       在RtMOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=

       在RtMCE中,∵OC=2,∠CMO=60°,∴ME=4

 ∴点CE的坐标分别为(0,),(-3,0) ····································· 6分

∴切线CE的解析式为·················································· 8分

 (3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0) ······· 9分

        由题意可知方程组只有一组解

  即有两个相等实根,∴k=-2·································· 11分

  ∴过点D“蛋圆”切线的解析式y=-2x-3········································ 12分

 

试题详情

24.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.

如图12,点ABCD分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.

(1)  请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;

(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;

(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

(08湖南益阳24题解析)七、(本题12分)

试题详情

12.(08湖南长沙)26.如图,六边形ABCDEF内接于半径为r(常数)的⊙O,其中AD为直径,且AB=CD=DE=FA.

(1)当∠BAD=75°时,求的长;

(2)求证:BC∥AD∥FE;

(3)设AB=,求六边形ABCDEF的周长L关于的函数关系式,并指出为何值时,L取得最大值.

(08湖南长沙26题解析)26.(1)连结OB、OC,由∠BAD=75°,OA=OB知∠AOB=30°,    (1分)

∵AB=CD,∴∠COD=∠AOB=30°,∴∠BOC=120°,···················· (2分)

故的长为.····················································································· (3分)

(2)连结BD,∵AB=CD,∴∠ADB=∠CBD,∴BC∥AD,················· (5分)

同理EF∥AD,从而BC∥AD∥FE.······················································ (6分)

(3)过点B作BM⊥AD于M,由(2)知四边形ABCD为等腰梯形,

从而BC=AD-2AM=2r-2AM.·································································· (7分)

∵AD为直径,∴∠ABD=90°,易得△BAM∽△DAB

∴AM==,∴BC=2r-,同理EF=2r-·································· (8分)

∴L=4x+2(2r-)==,其中0<x< · (9分)

∴当x=r时,L取得最大值6r.····························································· (10分)

13(08湖南益阳)七、(本题12分)

试题详情

11.(08湖北咸宁)24.(本题(1)-(3)小题满分12分,(4)小题为附加题另外附加2分)

如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.

(1)  当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;

(2) 求正方形边长及顶点C的坐标;

(3) 在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.

(1)  附加题:(如果有时间,还可以继续

解答下面问题,祝你成功!)

如果点P、Q保持原速度速度不

变,当点P沿ABCD

速运动时,OPPQ能否相等,

若能,写出所有符合条件的t

值;若不能,请说明理由.

(08湖北咸宁24题解析)24.解:(1)(1,0)  -------------------------1分

       点P运动速度每秒钟1个单位长度.--------------------------3分

     (2) 过点BFy轴于点轴于点,则=8,.

       ∴.

       在Rt△AFB中,.----------------------------5分

      过点轴于点,与的延长线交于点.

∴△ABF≌△BCH.

 .

.

∴所求C点的坐标为(14,12).------------7分

     (3) 过点PPMy轴于点MPN轴于点N

则△APM∽△ABF.

      .  .

 ∴.  ∴.

设△OPQ的面积为(平方单位)

(0≤≤10)  ------------------10分

    说明:未注明自变量的取值范围不扣分.

 ∵<0  ∴当时, △OPQ的面积最大.------------11分

     此时P的坐标为() .  ----------------------------12分

   (4)  时,  OPPQ相等.--------- -------------14分

     对一个加1分,不需写求解过程.

试题详情

10.(08湖北武汉)(本题答案暂缺)25.(本题 12分)如图 1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将 四 边 形ABCD面积二等分,求k的值;(3)如图2,过点 E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转 180°后得△MNQ(点M,N,Q分别与 点 A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

        

(08湖北武汉25题解析)25.⑴;⑵;⑶M(3,2),N(1,3)

试题详情

9.(08湖北天门)(本题答案暂缺)24(本小题满分12)如图①,在平面直角坐标系中,A点坐标为(30)B点坐标为(04).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.

(1)N的坐标为(________________,________________)(用含x的代数式表示)

(2)x为何值时,△AMN为等腰三角形?

(3)如图②,连结ON△OMN△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度和此时x的值.

 

试题详情


同步练习册答案