95.(08山东聊城25题)25.(本题满分12分)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?
(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;
(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.
(08山东聊城25题解答)(本题满分12分)
解:(1)设正方形的边长为cm,则
.······················································································ 1分
即.
解得(不合题意,舍去),.
剪去的正方形的边长为1cm.······································································ 3分
(注:通过观察、验证直接写出正确结果给3分)
(2)有侧面积最大的情况.
设正方形的边长为cm,盒子的侧面积为cm2,
则与的函数关系式为:
.
即.···························································································· 5分
改写为.
当时,.
即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2. 7分
(3)有侧面积最大的情况.
设正方形的边长为cm,盒子的侧面积为cm2.
若按图1所示的方法剪折,则与的函数关系式为:
.
即.
当时,.························· 9分
若按图2所示的方法剪折,则与的函数关系式为:
.
即.
当时,.············································································· 11分
比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.
说明:解答题各小题只给了一种解答及评分说明,其他解法只要步骤合理,解答正确,均应给出相应分数.
94.(08广东梅州23题)23.本题满分11分.
如图11所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L.
(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)
(08广东梅州23题解答)解: (1) DC∥AB,AD=DC=CB,
∠CDB=∠CBD=∠DBA,······································································· 0.5分
∠DAB=∠CBA, ∠DAB=2∠DBA, ·· 1分
∠DAB+∠DBA=90, ∠DAB=60, 1.5分
∠DBA=30,AB=4, DC=AD=2, 2分
RtAOD,OA=1,OD=,··················· 2.5分
A(-1,0),D(0, ),C(2, ). 4分
(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B(3,0),
故可设所求为 = (+1)( -3) ···················································· 6分
将点D(0, )的坐标代入上式得, =.
所求抛物线的解析式为 = ································· 7分
其对称轴L为直线=1.·············································································· 8分
(3) PDB为等腰三角形,有以下三种情况:
①因直线L与DB不平行,DB的垂直平分线与L仅有一个交点P1,P1D=P1B,
P1DB为等腰三角形; ·········································································· 9分
②因为以D为圆心,DB为半径的圆与直线L有两个交点P2、P3,DB=DP2,DB=DP3, P2DB, P3DB为等腰三角形;
③与②同理,L上也有两个点P4、P5,使得 BD=BP4,BD=BP5. ····· 10分
由于以上各点互不重合,所以在直线L上,使PDB为等腰三角形的点P有5个.
93.(08福建南平26题)26.(14分)
(1)如图1,图2,图3,在中,分别以为边,向外作正三角形,正四边形,正五边形,相交于点.
①如图1,求证:;
②探究:如图1, ;
如图2, ;
如图3, .
(2)如图4,已知:是以为边向外所作正边形的一组邻边;是以为边向外所作正边形的一组邻边.的延长相交于点.
①猜想:如图4, (用含的式子表示);
②根据图4证明你的猜想.
(08福建南平26题解答)(1)①证法一:与均为等边三角形,
,······················································································ 2分
且············································· 3分
,
即······················································ 4分
.················································ 5分
证法二:与均为等边三角形,
,······················································································ 2分
且····················································································· 3分
可由绕着点按顺时针方向旋转得到·························· 4分
.························································································· 5分
②,,.································································· 8分(每空1分)
(2)①···································································································· 10分
②证法一:依题意,知和都是正边形的内角,,,
,即.························· 11分
.······················································································· 12分
,,··· 13分
,
······································ 14分
证法二:同上可证 .···················································· 12分
,如图,延长交于,
,
······························ 13分
··············· 14分
证法三:同上可证 .···················································· 12分
.
,
······················································ 13分
即······································································ 14分
证法四:同上可证 .···················································· 12分
.如图,连接,
.·································· 13分
即····························· 14分
注意:此题还有其它证法,可相应评分.
92.(08四川资阳24题)24.(本小题满分12分)
如图10,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
(08四川资阳24题解答)(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,
∴∠OCA+∠OCB=90°,
又∵∠OCB+∠OBC=90°,
∴∠OCA=∠OBC,
又∵∠AOC= ∠COB=90°,
∴ΔAOC∽ ΔCOB,·················································································· 1分
∴.
又∵A(–1,0),B(9,0),
∴,解得OC=3(负值舍去).
∴C(0,–3),
····················································································································· 3分
设抛物线解析式为y=a(x+1)(x–9),
∴–3=a(0+1)(0–9),解得a=,
∴二次函数的解析式为y=(x+1)(x–9),即y=x2–x–3.·················· 4分
(2) ∵AB为O′的直径,且A(–1,0),B(9,0),
∴OO′=4,O′(4,0),················································································ 5分
∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,
∴∠BCD=∠BCE=×90°=45°,
连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=AB=5.
∴D(4,–5).······························································································ 6分
∴设直线BD的解析式为y=kx+b(k≠0)
∴························································· 7分
解得
∴直线BD的解析式为y=x–9.······························ 8分
(3) 假设在抛物线上存在点P,使得∠PDB=∠CBD,
解法一:设射线DP交⊙O′于点Q,则.
分两种情况(如答案图1所示):
①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).
∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合,
因此,点Q1(7,–4)符合,
∵D(4,–5),Q1(7,–4),
∴用待定系数法可求出直线DQ1解析式为y=x–.························ 9分
解方程组得
∴点P1坐标为(,),[坐标为(,)不符合题意,舍去].
····················································································································· 10分
②∵Q1(7,–4),
∴点Q1关于x轴对称的点的坐标为Q2(7,4)也符合.
∵D(4,–5),Q2(7,4).
∴用待定系数法可求出直线DQ2解析式为y=3x–17.·························· 11分
解方程组得
∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].
····················································································································· 12分
∴符合条件的点P有两个:P1(,),P2(14,25).
解法二:分两种情况(如答案图2所示):
①当DP1∥CB时,能使∠PDB=∠CBD.
∵B(9,0),C(0,–3).
∴用待定系数法可求出直线BC解析式为y=x–3.
又∵DP1∥CB,∴设直线DP1的解析式为y=x+n.
把D(4,–5)代入可求n= –,
∴直线DP1解析式为y=x–.·················· 9分
解方程组得
∴点P1坐标为(,),[坐标为(,)不符合题意,舍去].
····················································································································· 10分
②在线段O′B上取一点N,使BN=DM时,得ΔNBD≌ΔMDB(SAS),∴∠NDB=∠CBD.
由①知,直线BC解析式为y=x–3.
取x=4,得y= –,∴M(4,–),∴O′N=O′M=,∴N(,0),
又∵D(4,–5),
∴直线DN解析式为y=3x–17.······························································· 11分
解方程组得
∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].
····················································································································· 12分
∴符合条件的点P有两个:P1(,),P2(14,25).
解法三:分两种情况(如答案图3所示):
①求点P1坐标同解法二.········································································ 10分
②过C点作BD的平行线,交圆O′于G,
此时,∠GDB=∠GCB=∠CBD.
由(2)题知直线BD的解析式为y=x–9,
又∵ C(0,–3)
∴可求得CG的解析式为y=x–3,
设G(m,m–3),作GH⊥x轴交与x轴与H,
连结O′G,在Rt△O′GH中,利用勾股定理可得,m=7,
由D(4,–5)与G(7,4)可得,
DG的解析式为,······································································ 11分
解方程组得
∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].··········· 12分
∴符合条件的点P有两个:P1(,),P2(14,25).
说明:本题解法较多,如有不同的正确解法,请按此步骤给分.
24.解:(1)解法1:根据题意可得:A(-1,0),B(3,0);
则设抛物线的解析式为(a≠0)
又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1
∴y=x2-2x-3······························································································· 3分
自变量范围:-1≤x≤3··········································································· 4分
解法2:设抛物线的解析式为(a≠0)
根据题意可知,A(-1,0),B(3,0),D(0,-3)三点都在抛物线上
∴,解之得:
∴y=x2-2x-3······························································································· 3分
自变量范围:-1≤x≤3················································· 4分
(2)设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,
在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=
在Rt△MCE中,∵OC=2,∠CMO=60°,∴ME=4
∴点C、E的坐标分别为(0,),(-3,0) ····································· 6分
∴切线CE的解析式为·················································· 8分
(3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0) ······· 9分
由题意可知方程组只有一组解
即有两个相等实根,∴k=-2·································· 11分
∴过点D“蛋圆”切线的解析式y=-2x-3········································ 12分
24.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
(08湖南益阳24题解析)七、(本题12分)
12.(08湖南长沙)26.如图,六边形ABCDEF内接于半径为r(常数)的⊙O,其中AD为直径,且AB=CD=DE=FA.
(1)当∠BAD=75°时,求的长;
(2)求证:BC∥AD∥FE;
(3)设AB=,求六边形ABCDEF的周长L关于的函数关系式,并指出为何值时,L取得最大值.
(08湖南长沙26题解析)26.(1)连结OB、OC,由∠BAD=75°,OA=OB知∠AOB=30°, (1分)
∵AB=CD,∴∠COD=∠AOB=30°,∴∠BOC=120°,···················· (2分)
故的长为.····················································································· (3分)
(2)连结BD,∵AB=CD,∴∠ADB=∠CBD,∴BC∥AD,················· (5分)
同理EF∥AD,从而BC∥AD∥FE.······················································ (6分)
(3)过点B作BM⊥AD于M,由(2)知四边形ABCD为等腰梯形,
从而BC=AD-2AM=2r-2AM.·································································· (7分)
∵AD为直径,∴∠ABD=90°,易得△BAM∽△DAB
∴AM==,∴BC=2r-,同理EF=2r-·································· (8分)
∴L=4x+2(2r-)==,其中0<x< · (9分)
∴当x=r时,L取得最大值6r.····························································· (10分)
13(08湖南益阳)七、(本题12分)
11.(08湖北咸宁)24.(本题(1)-(3)小题满分12分,(4)小题为附加题另外附加2分)
如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.
(1) 当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2) 求正方形边长及顶点C的坐标;
(3) 在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.
(1) 附加题:(如果有时间,还可以继续
解答下面问题,祝你成功!)
如果点P、Q保持原速度速度不
变,当点P沿A→B→C→D匀
速运动时,OP与PQ能否相等,
若能,写出所有符合条件的t的
值;若不能,请说明理由.
(08湖北咸宁24题解析)24.解:(1)(1,0) -------------------------1分
点P运动速度每秒钟1个单位长度.--------------------------3分
(2) 过点作BF⊥y轴于点,⊥轴于点,则=8,.
∴.
在Rt△AFB中,.----------------------------5分
过点作⊥轴于点,与的延长线交于点.
∵ ∴△ABF≌△BCH.
∴.
∴.
∴所求C点的坐标为(14,12).------------7分
(3) 过点P作PM⊥y轴于点M,PN⊥轴于点N,
则△APM∽△ABF.
∴. .
∴. ∴.
设△OPQ的面积为(平方单位)
∴(0≤≤10) ------------------10分
说明:未注明自变量的取值范围不扣分.
∵<0 ∴当时, △OPQ的面积最大.------------11分
此时P的坐标为(,) . ----------------------------12分
(4) 当 或时, OP与PQ相等.--------- -------------14分
对一个加1分,不需写求解过程.
10.(08湖北武汉)(本题答案暂缺)25.(本题 12分)如图 1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将 四 边 形ABCD面积二等分,求k的值;(3)如图2,过点 E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转 180°后得△MNQ(点M,N,Q分别与 点 A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.
(08湖北武汉25题解析)25.⑴;⑵;⑶M(3,2),N(1,3)
9.(08湖北天门)(本题答案暂缺)24.(本小题满分12分)如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.
(1)点N的坐标为(________________,________________);(用含x的代数式表示)
(2)当x为何值时,△AMN为等腰三角形?
(3)如图②,连结ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度和此时x的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com