2.第(2)问回答正确的得1分,证明正确的得1分,求出的值各得1分;
2.第(2)问中,①②③任意写对一条得1分;其它结论参照给分.
58(08江西省卷25题)(本大题10分)如图1,正方形和正三角形
的边长都为1,点
分别在线段
上滑动,设点
到
的距离为
,到
的距离为
,记
为
(当点
分别与
重合时,记
).
(1)当时(如图2所示),求
的值(结果保留根号);
(2)当为何值时,点
落在对角线
上?请说出你的理由,并求出此时
的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
0.03 |
0 |
|
|
0.29 |
|
![]() |
|
0.29 |
0.13 |
|
|
0.03 |
|
(4)若将“点分别在线段
上滑动”改为“点
分别在正方形
边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点
运动所形成的大致图形.
(参考数据:
.)
(08江西省卷25题解析)解:(1)过
作
于
交
于
,
于
.
,
,
,
.
,
.····························································································· 2分
(2)当时,点
在对角线
上,其理由是:······································ 3分
过作
交
于
,
过
作
交
于
.
平分
,
,
.
,
,
.
,
.
,
.
即时,点
落在对角线
上.································································ 4分
(以下给出两种求的解法)
方法一:,
.
在中,
,
.·············································································· 5分
.···························································································· 6分
方法二:当点在对角线
上时,有
,································································································ 5分
解得
.···························································································· 6分
(3)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0.13 |
0.03 |
0 |
0.03 |
0.13 |
0.29 |
0.50 |
![]() |
0.50 |
0.29 |
0.13 |
0.03 |
0 |
0.03 |
0.13 |
······························································ 8分
(4)由点所得到的大致图形如图所示:
················································································· 10分
说明:1.第(1)问中,写对的值各得1分;
57.(08江西省卷24题)(本大题9分)已知:如图所示的两条抛物线的解析式分别是
,
(其中
为常数,且
).
(1)请写出三条与上述抛物线有关的不同类型的结论;
(2)当时,设
与
轴分别交于
两点(
在
的左边),
与
轴分别交于
两点(
在
的左边),观察
四点坐标,请写出一个你所得到的正确结论,并说明理由;
(3)设上述两条抛物线相交于
两点,直线
都垂直于
轴,
分别经过
两点,
在直线
之间,且
与两条抛物线分别交于
两点,求线段
的最大值.
(08江西省卷24题解析)(1)解:答案不唯一,只要合理均可.例如:
①抛物线开口向下,或抛物线
开口向上;
②抛物线的对称轴是
,或抛物线
的对称轴是
;
③抛物线经过点
,或抛物线
经过点
;
④抛物线与
的形状相同,但开口方向相反;
⑤抛物线与
都与
轴有两个交点;
⑥抛物线经过点
或抛物线
经过点
;
等等.························································································································ 3分
(2)当时,
,令
,
解得.····························································································· 4分
,令
,解得
.························ 5分
①点
与点
对称,点
与点
对称;
②四点横坐标的代数和为0;
③(或
).··········································· 6分
(3),
抛物线
开口向下,抛物线
开口向上.········· 7分
根据题意,得.············ 8分
当
时,
的最大值是2.········································································· 9分
说明:1.第(1)问每写对一条得1分;
55.(08吉林长春27题)(12分)已知两个关于的二次函数
与当
时,
;且二次函数
的图象的对称轴是直
线
.
(1)求的值;
(2)求函数的表达式;
(3)在同一直角坐标系内,问函数的图象与
的图象是否有交点?请说明理由.
(08吉林长春27题解析)[解] (1)由
得.
又因为当时,
,即
,
解得,或
(舍去),故
的值为
.
(2)由,得
,
所以函数的图象的对称轴为
,
于是,有,解得
,
所以.
(3)由,得函数
的图象为抛物线,其开口向下,顶点坐标为
;
由,得函数
的图象为抛物线,其开口向上,顶点坐标为
;
故在同一直角坐标系内,函数的图象与
的图象没有交点.
56(08江苏盐城28题)(本题满分12分)
如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90º.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ▲ ,数量关系为 ▲ .
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)
(3)若AC=,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
(08江苏盐城28题解析)(1)①CF与BD位置关系是 垂 直、数量关系是相 等;
②当点D在BC的延长线上时①的结论仍成立.
由正方形ADEF得 AD=AF ,∠DAF=90º.
∵∠BAC=90º,∴∠DAF=∠BAC , ∴∠DAB=∠FAC,
又AB=AC ,∴△DAB≌△FAC , ∴CF=BD
∠ACF=∠ABD.
∵∠BAC=90º, AB=AC ,∴∠ABC=45º,∴∠ACF=45º,
∴∠BCF=∠ACB+∠ACF= 90º.即 CF⊥BD
(2)画图正确
当∠BCA=45º时,CF⊥BD(如图丁).
理由是:过点A作AG⊥AC交BC于点G,∴AC=AG
可证:△GAD≌△CAF ∴∠ACF=∠AGD=45º
∠BCF=∠ACB+∠ACF= 90º. 即CF⊥BD
(3)当具备∠BCA=45º时,
过点A作AQ⊥BC交BC的延长线于点Q,(如图戊)
∵DE与CF交于点P时, ∴此时点D位于线段CQ上,
∵∠BCA=45º,可求出AQ= CQ=4.设CD=x ,∴ DQ=4-x,
容易说明△AQD∽△DCP,∴ , ∴
,
.
∵0<x≤3 ∴当x=2时,CP有最大值1.
54.(08湖南永州25题)(10分)如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,OB=OC=3 .
(1)求此二次函数的解析式.
(2)写出顶点坐标和对称轴方程.
(3)点M、N在y=ax2+bx+c的图像上(点N在点M的右边),且MN∥x轴,求以MN为直径且与x轴相切的圆的半径.
(08湖南永州25题解析)(1)依题意分别代入
1分
解方程组得所求解析式为······································································ 4分
(2)··············································································· 5分
顶点坐标
,对称轴
················································································· 7分
(3)设圆半径为,当
在
轴下方时,
点坐标为
····························· 8分
把点代入
得
································································· 9分
同理可得另一种情形
圆的半径为
或
10分
51.(08湖南郴州27题)(本题满分10分)如图10,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F. FE与DC的延长线相交于点G,连结DE,DF..
(1) 求证:ΔBEF ∽ΔCEG.
(2) 当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.
(3)设BE=x,△DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?
(08湖南郴州27题解析)(1) 因为四边形ABCD是平行四边形,
所以 1分
所以
所以 ························································································· 3分
(2)的周长之和为定值.······················································ 4分
理由一:
过点C作FG的平行线交直线AB于H ,
因为GF⊥AB,所以四边形FHCG为矩形.所以 FH=CG,FG=CH
因此,的周长之和等于BC+CH+BH
由 BC=10,AB=5,AM=4,可得CH=8,BH=6,
所以BC+CH+BH=24 ····················································································· 6分
理由二:
由AB=5,AM=4,可知
在Rt△BEF与Rt△GCE中,有:
,
所以,△BEF的周长是, △ECG的周长是
又BE+CE=10,因此的周长之和是24.······························· 6分
(3)设BE=x,则
所以 ································· 8分
配方得:.
所以,当时,y有最大值.······································································ 9分
最大值为.······································································································· 10分
52(08湖南郴州28题)(本题满分10分)
如图13,在平面直角坐标系中,圆M经过原点O,且与轴、
轴分别相交于
两点.
(1)求出直线AB的函数解析式;
(2)若有一抛物线的对称轴平行于轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;
(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得
?若存在,请求出点P的坐标;若不存在,请说明理由.
(08湖南郴州28题解析)解:(1)设AB的函数表达式为
∵∴
∴
∴直线AB的函数表达式为.···························································· 3分
(2)设抛物线的对称轴与⊙M相交于一点,依题意知这一点就是抛物线的顶点C。又设对称轴与轴相交于点N,在直角三角形AOB中,
因为⊙M经过O、A、B三点,且⊙M的直径,∴半径MA=5,∴N为AO的中点AN=NO=4,∴MN=3∴CN=MC-MN=5-3=2,∴C点的坐标为(-4,2).
设所求的抛物线为
则
∴所求抛物线为 ········································································ 7分
(3)令得D、E两点的坐标为D(-6,0)、E(-2,0),所以DE=4.
又AC=直角三角形的面积
假设抛物线上存在点.
当故满足条件的存在.它们是
. ······················· 10分
53(08湖南湘潭26题)(本题满分10分)
已知抛物线经过点A(5,0)、B(6,-6)和原点.
(1)求抛物线的函数关系式;
(2)若过点B的直线与抛物线相交于点C(2,m),请求出
OBC的面积S的值.
(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E. 直线PF与直线DC及两坐标轴围成矩形OFED(如图),是否存在点P,使得OCD与
CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.
(08湖南湘潭26题解析)解:(1)由题意得:
2分
解得 ·············································· 3分
故抛物线的函数关系式为······· 4分
(2)在抛物线上,
5分
点坐标为(2,6),
、C在直线
上
解得
直线BC的解析式为
································································ 6分
设BC与x轴交于点G,则G的坐标为(4,0)
································································ 7分
(3)存在P,使得∽
········································································ 8分
设P,
故
若要∽
,则要
或
即或
解得或
又在抛物线上,
或
解得或
故P点坐标为和
··································································· 10分
(只写出一个点的坐标记9分)
76.(08天津市卷26题)(本小题10分)
已知抛物线,
(Ⅰ)若,
,求该抛物线与
轴公共点的坐标;
(Ⅱ)若,且当
时,抛物线与
轴有且只有一个公共点,求
的取值范围;
(Ⅲ)若,且
时,对应的
;
时,对应的
,试判断当
时,抛物线与
轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
(08天津市卷26题解析)解(Ⅰ)当,
时,抛物线为
,
方程的两个根为
,
.
∴该抛物线与轴公共点的坐标是
和
. ······································ 2分
(Ⅱ)当时,抛物线为
,且与
轴有公共点.
对于方程,判别式
≥0,有
≤
. ································ 3分
①当时,由方程
,解得
.
此时抛物线为与
轴只有一个公共点
.························
4分
②当时,
时,
,
时,
.
由已知时,该抛物线与
轴有且只有一个公共点,考虑其对称轴为
,
应有 即
解得.
综上,或
. ··········································································· 6分
(Ⅲ)对于二次函数,
由已知时,
;
时,
,
又,∴
.
于是.而
,∴
,即
.
∴. ········································································································· 7分
∵关于的一元二次方程
的判别式
,
∴抛物线与
轴有两个公共点,顶点在
轴下方.·················· 8分
又该抛物线的对称轴,
由
,
,
,
得,
∴.
又由已知时,
;
时,
,观察图象,
可知在范围内,该抛物线与
轴有两个公共点. ································ 10分
77(08湖北宜昌25题)如图1,已知四边形OABC中的三个顶点坐标为O(0,0),A(0,n),C(m,0).动点P从点O出发依次沿线段OA,AB,BC向点C移动,设移动路程为z,△OPC的面积S随着z的变化而变化的图象如图2所示.m,n是常数, m>1,n>0.
(1)请你确定n的值和点B的坐标;
(2)当动点P是经过点O,C的抛物线y=ax
+bx+c的顶点,且在双曲线y=
上时,求这时四边形OABC的面积.
(08湖北宜昌25题解析)解:(1) 从图中可知,当P从O向A运动时,△POC的面积S=mz, z由0逐步增大到2,则S由0逐步增大到m,故OA=2,n=2 . (1分)
同理,AB=1,故点B的坐标是(1,2).(2分)
(2)解法一:
∵抛物线y=ax+bx+c经过点O(0,0),C(m ,0),∴c=0,b=-am,(3分)
∴抛物线为y=ax-amx,顶点坐标为(
,-am2).(4分)
如图1,设经过点O,C,P的抛物线为l.
当P在OA上运动时,O,P都在y轴上,
这时P,O,C三点不可能同在一条抛物线上,
∴这时抛物线l不存在, 故不存在m的值..①
当点P与C重合时,双曲线y=不可能经过P,
故也不存在m的值.②(5分)
(说明:①②任做对一处评1分,两处全对也只评一分)
当P在AB上运动时,即当0<x≤1时,y
=2,
抛物线l的顶点为P(,2).
∵P在双曲线y=上,可得 m=
,∵
>2,与 x
=
≤1不合,舍去.(6分)③
容易求得直线BC的解析式是:,(7分)
当P在BC上运动,设P的坐标为 (x,y
),当P是顶点时 x
=
,
故得y=
=
,顶点P为(
,
),
∵1< x=
<m,∴m>2,又∵P在双曲线y=
上,
于是,×
=
,化简后得5m
-22m+22=0,
解得,
,(8分)
与题意2<x=
<m不合,舍去.④(9分)
故由①②③④,满足条件的只有一个值:.
这时四边形OABC的面积==
.(10分)
(2)解法二:
∵抛物线y=ax+bx+c经过点O(0,0),C(m ,0)
∴c=0,b=-am,(3分)
∴抛物线为y=ax-amx,顶点坐标P为(,-am2). (4分)
∵m>1,∴>0,且≠m,
∴P不在边OA上且不与C重合. (5分)
∵P在双曲线y=上,∴×(- am2)=即a=- .
.①当1<m≤2时,<≤1,如图2,分别过B,P作x轴的垂线,
M,N为垂足,此时点P在线段AB上,且纵坐标为2,
∴-am2=2,即a=-.
而a=- ,∴- =-,m=>2,而1<m≤2,不合题意,舍去.(6分)
②当m≥2时,>1,如图3,分别过B,P作x轴的垂线,M,N为垂足,ON>OM,
此时点P在线段CB上,易证Rt△BMC∽Rt△PNC,∴BM∶PN=MC∶NC,即:
2∶PN=(m-1)∶,∴PN=(7分)而P的纵坐标为- am2,∴=- am2,即a= 而a=-,∴- =
化简得:5m2-22m+22=0.解得:m= ,(8分)
但m≥2,所以m=舍去,(9分)
取m = .
由以上,这时四边形OABC的面积为:
(AB+OC) ×OA=(1+m) ×2=. (10分)
74.(08广东东莞22题)(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边
AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.
(1)填空:如图9,AC= ,BD= ;四边形ABCD是 梯形.
(2)请写出图9中所有的相似三角形(不含全等三角形).
(3)如图10,若以AB所在直线为轴,过点A垂直于AB的直线为
轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向
轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.
(08广东东莞22题解析)解:(1),
,…………………………1分
等腰;…………………………2分
(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)
①△DCE、△ABE与△ACD或△BDC两两相似,分别是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5对)
②△ABD∽△EAD,△ABD∽△EBC;(有2对)
③△BAC∽△EAD,△BAC∽△EBC;(有2对)
所以,一共有9对相似三角形.…………………………………………5分
(3)由题意知,FP∥AE,
∴ ∠1=∠PFB,
又∵ ∠1=∠2=30°,
∴ ∠PFB=∠2=30°,
∴ FP=BP.…………………………6分
过点P作PK⊥FB于点K,则.
∵ AF=t,AB=8,
∴ FB=8-t,.
在Rt△BPK中,. ……………………7分
∴ △FBP的面积,
∴ S与t之间的函数关系式为:
,或
. …………………………………8分
t的取值范围为:. …………………………………………………………9分
75(08甘肃兰州28题)(本题满分12分)如图19-1,是一张放在平面直角坐标系中的矩形纸片,
为原点,点
在
轴的正半轴上,点
在
轴的正半轴上,
,
.
(1)在边上取一点
,将纸片沿
翻折,使点
落在
边上的点
处,求
两点的坐标;
(2)如图19-2,若上有一动点
(不与
重合)自
点沿
方向向
点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为
秒(
),过
点作
的平行线交
于点
,过点
作
的平行线交
于点
.求四边形
的面积
与时间
之间的函数关系式;当
取何值时,
有最大值?最大值是多少?
(3)在(2)的条件下,当为何值时,以
为顶点的三角形为等腰三角形,并求出相应的时刻点
的坐标.
(08甘肃兰州28题解析)(本题满分12分)
解:(1)依题意可知,折痕是四边形
的对称轴,
在
中,
,
.
.
.
点坐标为(2,4).························································································· 2分
在中,
, 又
.
. 解得:
.
点坐标为
································································································· 3分
(2)如图①,
.
,又知
,
,
, 又
.
而显然四边形为矩形.
························································· 5分
,又
当
时,
有最大值
.··································································· 6分
(3)(i)若以为等腰三角形的底,则
(如图①)
在中,
,
,
为
的中点,
.
又,
为
的中点.
过点作
,垂足为
,则
是
的中位线,
,
,
当
时,
,
为等腰三角形.
此时点坐标为
.······················································································· 8分
(ii)若以为等腰三角形的腰,则
(如图②)
在
中,
.
过点作
,垂足为
.
,
.
.
,
.
,
,
当
时,(
),此时
点坐标为
.·············· 11分
综合(i)(ii)可知,或
时,以
为顶点的三角形为等腰三角形,相应
点的坐标为
或
.···································································································· 12分
71.(08江苏镇江28题)(本小题满分8分)探索研究
如图,在直角坐标系
中,点
为函数
在第一象限内的图象上的任一点,点
的坐标为
,直线
过
且与
轴平行,过
作
轴的平行线分别交
轴,
于
,连结
交
轴于
,直线
交
轴于
.
(1)求证:点为线段
的中点;
(2)求证:①四边形为平行四边形;
②平行四边形为菱形;
(3)除点外,直线
与抛物线
有无其它公共点?并说明理由.
(08江苏镇江28题解析)(1)法一:由题可知.
,
,
.······················································································ (1分)
,即
为
的中点.································································ (2分)
法二:,
,
.····················································· (1分)
又轴,
.··········································································· (2分)
(2)①由(1)可知,
,
,
,
.······················································································· (3分)
,
又,
四边形
为平行四边形.············································ (4分)
②设,
轴,则
,则
.
过作
轴,垂足为
,在
中,
.
平行四边形
为菱形.········································································ (6分)
(3)设直线为
,由
,得
,
代入得:
直线
为
.···················· (7分)
设直线与抛物线的公共点为
,代入直线
关系式得:
,
,解得
.得公共点为
.
所以直线与抛物线
只有一个公共点
.··································· (8分)
72(08黑龙江齐齐哈尔28题)(本小题满分10分)
如图,在平面直角坐标系中,点,点
分别在
轴,
轴的正半轴上,且满足
.
(1)求点,点
的坐标.
(2)若点从
点出发,以每秒1个单位的速度沿射线
运动,连结
.设
的面积为
,点
的运动时间为
秒,求
与
的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,是否存在点
,使以点
为顶点的三角形与
相似?若存在,请直接写出点
的坐标;若不存在,请说明理由.
(08黑龙江齐齐哈尔28题解析)解:(1)
,
················································································ (1分)
,
点
,点
分别在
轴,
轴的正半轴上
····························································································· (2分)
(2)求得····················································································· (3分)
(每个解析式各1分,两个取值范围共1分)············································ (6分)
(3);
;
;
(每个1分,计4分)
·························································································································· (10分)
注:本卷中所有题目,若由其它方法得出正确结论,酌情给分.
73(08海南省卷24题)(本题满分14分)如图13,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:① CB=CE ;② D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
(08海南省卷24题解析)(1)∵ 点B(-2,m)在直线y=-2x-1上,
∴ m=-2×(-2)-1=3. ………………………………(2分)
∴ B(-2,3)
∵ 抛物线经过原点O和点A,对称轴为x=2,
∴ 点A的坐标为(4,0) .
设所求的抛物线对应函数关系式为y=a(x-0)(x-4). ……………………(3分)
将点B(-2,3)代入上式,得3=a(-2-0)(-2-4),∴ .
∴ 所求的抛物线对应的函数关系式为,即
. (6分)
(2)①直线y=-2x-1与y轴、直线x=2的交点坐标分别为D(0,-1) E(2,-5).
过点B作BG∥x轴,与y轴交于F、直线x=2交于G,
则BG⊥直线x=2,BG=4.
在Rt△BGC中,BC=.
∵ CE=5,
∴ CB=CE=5. ……………………(9分)
②过点E作EH∥x轴,交y轴于H,
则点H的坐标为H(0,-5).
又点F、D的坐标为F(0,3)、D(0,-1),
∴ FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°.
∴ △DFB≌△DHE (SAS),
∴ BD=DE.
即D是BE的中点. ………………………………(11分)
(3) 存在. ………………………………(12分)
由于PB=PE,∴ 点P在直线CD上,
∴ 符合条件的点P是直线CD与该抛物线的交点.
设直线CD对应的函数关系式为y=kx+b.
将D(0,-1) C(2,0)代入,得. 解得
.
∴ 直线CD对应的函数关系式为y=x-1.
∵ 动点P的坐标为(x,),
∴ x-1=
.
………………………………(13分)
解得 ,
. ∴
,
.
∴ 符合条件的点P的坐标为(,
)或(
,
).…(14分)
(注:用其它方法求解参照以上标准给分.)
96.(08广东佛山25题)25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.
例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).
请你用上面的思想和方法对下面关于圆的问题进行研究:
(1) 如图1,在圆O所在平面上,放置一条直线(
和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?
(2) 如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线和
(
与圆O分别交于点A、B,
与圆O分别交于点C、D).
请你根据所构造的图形提出一个结论,并证明之.
(3) 如图3,其中AB是圆O的直径,AC是弦,D是的中点,弦DE⊥AB于点F. 请找出点C和点E重合的条件,并说明理由.
(08广东佛山25题解答)解:(1) 弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等. (写对一个给1分,写对两个给2分)
(2) 情形1 如图21,AB为弦,CD为垂直于弦AB的直径. …………………………3分
结论:(垂径定理的结论之一). …………………………………………………………4分
证明:略(对照课本的证明过程给分). …………………………………………………7分
情形2 如图22,AB为弦,CD为弦,且AB与CD在圆内相交于点P.
结论:
.
证明:略.
情形3 (图略)AB为弦,CD为弦,且与
在圆外相交于点P.
结论:.
证明:略.
情形4 如图23,AB为弦,CD为弦,且AB∥CD.
结论: = .
证明:略.
(上面四种情形中做一个即可,图1分,结论1分,证明3分;
其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)
(3) 若点C和点E重合,
则由圆的对称性,知点C和点D关于直径AB对称. …………………………………8分
设
,则
,
.………………………………9分
又D是 的中点,所以,
即.………………………………………………………10分
解得.……………………………………………………………11分
(若求得或
等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆的十二等分点,然后说明)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com