0  204004  204012  204018  204022  204028  204030  204034  204040  204042  204048  204054  204058  204060  204064  204070  204072  204078  204082  204084  204088  204090  204094  204096  204098  204099  204100  204102  204103  204104  204106  204108  204112  204114  204118  204120  204124  204130  204132  204138  204142  204144  204148  204154  204160  204162  204168  204172  204174  204180  204184  204190  204198  447090 

2.第(2)问回答正确的得1分,证明正确的得1分,求出的值各得1分;

试题详情

2.第(2)问中,①②③任意写对一条得1分;其它结论参照给分.

58(08江西省卷25题)(本大题10分)如图1,正方形和正三角形的边长都为1,点分别在线段上滑动,设点的距离为,到的距离为,记(当点分别与重合时,记).

(1)当时(如图2所示),求的值(结果保留根号);

(2)当为何值时,点落在对角线上?请说出你的理由,并求出此时的值(结果保留根号);

(3)请你补充完成下表(精确到0.01):










 
0.03
0
 
 
0.29
 

 
0.29
0.13
 
 
0.03
 

(4)若将“点分别在线段上滑动”改为“点分别在正方形边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点运动所形成的大致图形.

(参考数据:.)

(08江西省卷25题解析)解:(1)过

.····························································································· 2分

(2)当时,点在对角线上,其理由是:······································ 3分

平分

时,点落在对角线上.································································ 4分

(以下给出两种求的解法)

方法一:

中,

.·············································································· 5分

.···························································································· 6分

方法二:当点在对角线上时,有

,································································································ 5分

解得

.···························································································· 6分

(3)










0.13
0.03
0
0.03
0.13
0.29
0.50

0.50
0.29
0.13
0.03
0
0.03
0.13

                  ······························································ 8分

(4)由点所得到的大致图形如图所示:

················································································· 10分

说明:1.第(1)问中,写对的值各得1分;

试题详情

57.(08江西省卷24题)(本大题9分)已知:如图所示的两条抛物线的解析式分别是

(其中为常数,且).

(1)请写出三条与上述抛物线有关的不同类型的结论;

(2)当时,设轴分别交于两点(的左边),轴分别交于两点(的左边),观察四点坐标,请写出一个你所得到的正确结论,并说明理由;

(3)设上述两条抛物线相交于两点,直线都垂直于轴,分别经过两点,在直线之间,且与两条抛物线分别交于两点,求线段的最大值.

(08江西省卷24题解析)(1)解:答案不唯一,只要合理均可.例如:

①抛物线开口向下,或抛物线开口向上;

②抛物线的对称轴是,或抛物线的对称轴是

③抛物线经过点,或抛物线经过点

④抛物线的形状相同,但开口方向相反;

⑤抛物线都与轴有两个交点;

⑥抛物线经过点或抛物线经过点

等等.························································································································ 3分

(2)当时,,令

解得.····························································································· 4分

,令,解得.························ 5分

与点对称,点与点对称;

四点横坐标的代数和为0;

(或).··········································· 6分

(3)

抛物线开口向下,抛物线开口向上.········· 7分

根据题意,得.············ 8分

时,的最大值是2.········································································· 9分

说明:1.第(1)问每写对一条得1分;

试题详情

55.(08吉林长春27题)(12分)已知两个关于的二次函数与当时,;且二次函数的图象的对称轴是直线

(1)求的值;

(2)求函数的表达式;

(3)在同一直角坐标系内,问函数的图象与的图象是否有交点?请说明理由.

(08吉林长春27题解析)[解] (1)由

又因为当时,,即

解得,或(舍去),故的值为

(2)由,得

所以函数的图象的对称轴为

于是,有,解得

所以

(3)由,得函数的图象为抛物线,其开口向下,顶点坐标为

,得函数的图象为抛物线,其开口向上,顶点坐标为

故在同一直角坐标系内,函数的图象与的图象没有交点.

56(08江苏盐城28题)(本题满分12分)

如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.

解答下列问题:

(1)如果AB=AC,∠BAC=90º.

①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为  ▲  ,数量关系为  ▲ 

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.

试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)

(3)若AC=,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.

(08江苏盐城28题解析)(1)①CF与BD位置关系是 、数量关系是

②当点D在BC的延长线上时①的结论仍成立.

由正方形ADEF得  AD=AF ,∠DAF=90º.

∵∠BAC=90º,∴∠DAF=∠BAC ,  ∴∠DAB=∠FAC,

又AB=AC ,∴△DAB≌△FAC  , ∴CF=BD    

  ∠ACF=∠ABD.

∵∠BAC=90º, AB=AC ,∴∠ABC=45º,∴∠ACF=45º,

∴∠BCF=∠ACB+∠ACF= 90º.即 CF⊥BD

(2)画图正确    

当∠BCA=45º时,CF⊥BD(如图丁).

  理由是:过点A作AG⊥AC交BC于点G,∴AC=AG

可证:△GAD≌△CAF  ∴∠ACF=∠AGD=45º 

∠BCF=∠ACB+∠ACF= 90º.  即CF⊥BD

(3)当具备∠BCA=45º时,

过点A作AQ⊥BC交BC的延长线于点Q,(如图戊)

∵DE与CF交于点P时, ∴此时点D位于线段CQ上,

∵∠BCA=45º,可求出AQ= CQ=4.设CD=x ,∴  DQ=4-x,

容易说明△AQD∽△DCP,∴ ,  ∴

∵0<x≤3  ∴当x=2时,CP有最大值1.

试题详情

54.(08湖南永州25题)(10分)如图,二次函数yax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,OB=OC=3 .

(1)求此二次函数的解析式.

(2)写出顶点坐标和对称轴方程.

(3)点M、N在yax2+bx+c的图像上(点N在点M的右边),且MN∥x轴,求以MN为直径且与x轴相切的圆的半径.

(08湖南永州25题解析)(1)依题意分别代入 1分

解方程组得所求解析式为······································································ 4分

(2)··············································································· 5分

顶点坐标,对称轴················································································· 7分

(3)设圆半径为,当轴下方时,点坐标为····························· 8分

点代入································································· 9分

同理可得另一种情形

圆的半径为    10分

试题详情

51.(08湖南郴州27题)(本题满分10分)如图10,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E BC边上的一个动点(不与BC重合).过E作直线AB的垂线,垂足为FFEDC的延长线相交于点G,连结DEDF

(1) 求证:ΔBEF ∽ΔCEG

(2) 当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.

(3)设BEx,△DEF的面积为 y,请你求出yx之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?

 

(08湖南郴州27题解析)(1)  因为四边形ABCD是平行四边形, 所以    1分

  所以

所以 ························································································· 3分

(2)的周长之和为定值.······················································ 4分

理由一:

过点CFG的平行线交直线ABH

因为GFAB,所以四边形FHCG为矩形.所以 FHCGFGCH

因此,的周长之和等于BC+CH+BH 

由  BC=10,AB=5,AM=4,可得CH=8,BH=6,

所以BC+CH+BH=24 ····················································································· 6分

理由二:

AB=5,AM=4,可知  

在Rt△BEF与Rt△GCE中,有:

所以,△BEF的周长是, △ECG的周长是

BE+CE=10,因此的周长之和是24.······························· 6分

(3)设BEx,则

所以 ································· 8分

配方得:

所以,当时,y有最大值.······································································ 9分

最大值为.······································································································· 10分

52(08湖南郴州28题)(本题满分10分)

如图13,在平面直角坐标系中,圆M经过原点O,且与轴、轴分别相交于两点.

(1)求出直线AB的函数解析式;

(2)若有一抛物线的对称轴平行于轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;

(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得?若存在,请求出点P的坐标;若不存在,请说明理由.

(08湖南郴州28题解析)解:(1)设AB的函数表达式为

∴直线AB的函数表达式为.···························································· 3分

(2)设抛物线的对称轴与⊙M相交于一点,依题意知这一点就是抛物线的顶点C。又设对称轴与轴相交于点N,在直角三角形AOB中,

因为⊙M经过O、A、B三点,且⊙M的直径,∴半径MA=5,∴N为AO的中点AN=NO=4,∴MN=3∴CN=MC-MN=5-3=2,∴C点的坐标为(-4,2).

设所求的抛物线为

∴所求抛物线为 ········································································ 7分

(3)令得D、E两点的坐标为D(-6,0)、E(-2,0),所以DE=4.

又AC=直角三角形的面积

假设抛物线上存在点

故满足条件的存在.它们是. ······················· 10分

53(08湖南湘潭26题)(本题满分10分)

已知抛物线经过点A(5,0)、B(6,-6)和原点.

(1)求抛物线的函数关系式;

(2)若过点B的直线与抛物线相交于点C(2,m),请求出OBC的面积S的值.

(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E. 直线PF与直线DC及两坐标轴围成矩形OFED(如图),是否存在点P,使得OCDCPE相似?若存在,求出点P的坐标;若不存在,请说明理由.

(08湖南湘潭26题解析)解:(1)由题意得:  2分

   解得 ·············································· 3分

故抛物线的函数关系式为······· 4分

(2)在抛物线上, 5分

点坐标为(2,6),C在直线

   解得

直线BC的解析式为································································ 6分

BCx轴交于点G,则G的坐标为(4,0)

································································ 7分

(3)存在P,使得········································································ 8分

设P

若要,则要

解得

在抛物线上,

解得

P点坐标为··································································· 10分

(只写出一个点的坐标记9分)

试题详情

76.(08天津市卷26题)(本小题10分)

已知抛物线

(Ⅰ)若,求该抛物线与轴公共点的坐标;

(Ⅱ)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;

(Ⅲ)若,且时,对应的时,对应的,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.

(08天津市卷26题解析)解(Ⅰ)当时,抛物线为

方程的两个根为

∴该抛物线与轴公共点的坐标是.  ······································ 2分

(Ⅱ)当时,抛物线为,且与轴有公共点.

对于方程,判别式≥0,有. ································ 3分

①当时,由方程,解得

此时抛物线为轴只有一个公共点.························ 4分

②当时,

时,

时,

由已知时,该抛物线与轴有且只有一个公共点,考虑其对称轴为

应有  即

解得

综上,.   ··········································································· 6分

(Ⅲ)对于二次函数

由已知时,时,

,∴

于是.而,∴,即

.  ·········································································································  7分

∵关于的一元二次方程的判别式

, 

∴抛物线轴有两个公共点,顶点在轴下方.·················· 8分

又该抛物线的对称轴

又由已知时,时,,观察图象,

可知在范围内,该抛物线与轴有两个公共点. ································ 10分

77(08湖北宜昌25题)如图1,已知四边形OABC中的三个顶点坐标为O(0,0),A(0,n),C(m,0).动点P从点O出发依次沿线段OAABBC向点C移动,设移动路程为z,△OPC的面积S随着z的变化而变化的图象如图2所示.mn是常数, m>1,n>0.

(1)请你确定n的值和点B的坐标;

(2)当动点P是经过点OC的抛物线yax+bx+c的顶点,且在双曲线y上时,求这时四边形OABC的面积.

(08湖北宜昌25题解析)解:(1) 从图中可知,当POA运动时,△POC的面积Smz z由0逐步增大到2,则S由0逐步增大到m,故OA=2,n=2 . (1分)

同理,AB1,故点B的坐标是(1,2).(2分)

(2)解法一:

∵抛物线yax+bx+c经过点O(0,0),C(m ,0),∴c=0,b=-am,(3分)

∴抛物线为yaxamx,顶点坐标为(,-am2).(4分)

如图1,设经过点OCP的抛物线为l.

POA上运动时,O,P都在y轴上,

这时P,O,C三点不可能同在一条抛物线上,

∴这时抛物线l不存在, 故不存在m的值..①

当点PC重合时,双曲线y不可能经过P,

故也不存在m的值.②(5分)

(说明:①②任做对一处评1分,两处全对也只评一分)

PAB上运动时,即当0<x≤1时,y=2,

抛物线l的顶点为P(,2).

P在双曲线y上,可得 m,∵>2,与 x≤1不合,舍去.(6分)③

容易求得直线BC的解析式是:,(7分)

PBC上运动,设P的坐标为  (x,y),当P是顶点时 x

故得y,顶点P为(),

∵1< x<m,∴m>2,又∵P在双曲线y上,

于是,×,化简后得5m-22m+220,

解得,,(8分)

与题意2<x<m不合,舍去.④(9分)

故由①②③④,满足条件的只有一个值:.

这时四边形OABC的面积=.(10分)

(2)解法二:

∵抛物线yax+bx+c经过点O(0,0),C(m ,0)

c=0,b=-am,(3分)

∴抛物线为yaxamx,顶点坐标P为(,-am2). (4分)

m>1,∴>0,且≠m

P不在边OA上且不与C重合. (5分)

P在双曲线y=上,∴×(- am2)=即a=- .

.①当1<m≤2时,<≤1,如图2,分别过BPx轴的垂线,

MN为垂足,此时点P在线段AB上,且纵坐标为2,

∴-am2=2,即a=-.

a=- ,∴- =-,m=>2,而1<m≤2,不合题意,舍去.(6分)

②当m≥2时,>1,如图3,分别过BPx轴的垂线,MN为垂足,ON>OM,

此时点P在线段CB上,易证Rt△BMC∽Rt△PNC,∴BMPNMCNC,即:  2∶PN=(m-1)∶,∴PN=(7分)而P的纵坐标为- am2,∴=- am2,即a= 而a=-,∴- =

化简得:5m2-22m+22=0.解得:m= ,(8分)

m≥2,所以m=舍去,(9分)

m = .

由以上,这时四边形OABC的面积为:

(AB+OC) ×OA=(1+m) ×2=. (10分)

试题详情

74.(08广东东莞22题)(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边

AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.

(1)填空:如图9,AC=     ,BD=     ;四边形ABCD是    梯形.

(2)请写出图9中所有的相似三角形(不含全等三角形).

(3)如图10,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.

 

(08广东东莞22题解析)解:(1),…………………………1分

等腰;…………………………2分

  (2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)

   ①△DCE、△ABE与△ACD或△BDC两两相似,分别是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5对)

②△ABD∽△EAD,△ABD∽△EBC;(有2对)

③△BAC∽△EAD,△BAC∽△EBC;(有2对)

所以,一共有9对相似三角形.…………………………………………5分

(3)由题意知,FP∥AE,

   ∴ ∠1=∠PFB,

又∵ ∠1=∠2=30°,

  ∴ ∠PFB=∠2=30°,

∴ FP=BP.…………………………6分

过点P作PK⊥FB于点K,则.

∵ AF=t,AB=8,

∴ FB=8-t,.

在Rt△BPK中,. ……………………7分

∴ △FBP的面积

∴ S与t之间的函数关系式为:

    ,或. …………………………………8分

t的取值范围为:. …………………………………………………………9分

75(08甘肃兰州28题)(本题满分12分)如图19-1,是一张放在平面直角坐标系中的矩形纸片,为原点,点轴的正半轴上,点轴的正半轴上,

(1)在边上取一点,将纸片沿翻折,使点落在边上的点处,求两点的坐标;

(2)如图19-2,若上有一动点(不与重合)自点沿方向向点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒(),过点作的平行线交于点,过点的平行线交于点.求四边形的面积与时间之间的函数关系式;当取何值时,有最大值?最大值是多少?

(3)在(2)的条件下,当为何值时,以为顶点的三角形为等腰三角形,并求出相应的时刻点的坐标.

 

(08甘肃兰州28题解析)(本题满分12分)

解:(1)依题意可知,折痕是四边形的对称轴,

中,

点坐标为(2,4).························································································· 2分

中,,  又

 .  解得:

点坐标为································································································· 3分

(2)如图①

,又知

, 又

而显然四边形为矩形.

························································· 5分

,又

时,有最大值.··································································· 6分

(3)(i)若以为等腰三角形的底,则(如图①)

中,的中点,

的中点.

过点,垂足为,则的中位线,

时,为等腰三角形.

此时点坐标为.······················································································· 8分

(ii)若以为等腰三角形的腰,则(如图②)

中,

过点,垂足为

时,(),此时点坐标为.·············· 11分

综合(i)(ii)可知,时,以为顶点的三角形为等腰三角形,相应点的坐标为.···································································································· 12分

试题详情

71.(08江苏镇江28题)(本小题满分8分)探索研究

如图,在直角坐标系中,点为函数在第一象限内的图象上的任一点,点的坐标为,直线且与轴平行,过轴的平行线分别交轴,,连结轴于,直线轴于

(1)求证:点为线段的中点;

(2)求证:①四边形为平行四边形;

②平行四边形为菱形;

(3)除点外,直线与抛物线有无其它公共点?并说明理由.

(08江苏镇江28题解析)(1)法一:由题可知

.······················································································ (1分)

,即的中点.································································ (2分)

法二:.····················································· (1分)

轴,.··········································································· (2分)

(2)①由(1)可知

.······················································································· (3分)

四边形为平行四边形.············································ (4分)

②设轴,则,则

轴,垂足为,在中,

平行四边形为菱形.········································································ (6分)

(3)设直线,由,得代入得:

  直线.···················· (7分)

设直线与抛物线的公共点为,代入直线关系式得:

,解得.得公共点为

所以直线与抛物线只有一个公共点.··································· (8分)

72(08黑龙江齐齐哈尔28题)(本小题满分10分)

如图,在平面直角坐标系中,点,点分别在轴,轴的正半轴上,且满足

(1)求点,点的坐标.

(2)若点点出发,以每秒1个单位的速度沿射线运动,连结.设的面积为,点的运动时间为秒,求的函数关系式,并写出自变量的取值范围.

(3)在(2)的条件下,是否存在点,使以点为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.

(08黑龙江齐齐哈尔28题解析)解:(1)

················································································ (1分)

,点分别在轴,轴的正半轴上

····························································································· (2分)

(2)求得····················································································· (3分)

(每个解析式各1分,两个取值范围共1分)············································ (6分)

(3)(每个1分,计4分)

·························································································································· (10分)

注:本卷中所有题目,若由其它方法得出正确结论,酌情给分.

73(08海南省卷24题)(本题满分14分)如图13,已知抛物线经过原点Ox轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点DE.

(1)求m的值及该抛物线对应的函数关系式;

(2)求证:① CB=CE ;② DBE的中点;

(3)若P(xy)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

(08海南省卷24题解析)(1)∵ 点B(-2,m)在直线y=-2x-1上,

m=-2×(-2)-1=3.           ………………………………(2分)

B(-2,3)

∵ 抛物线经过原点O和点A,对称轴为x=2,

∴ 点A的坐标为(4,0) .       

设所求的抛物线对应函数关系式为y=a(x-0)(x-4).  ……………………(3分)

将点B(-2,3)代入上式,得3=a(-2-0)(-2-4),∴ .

∴ 所求的抛物线对应的函数关系式为,即. (6分)

  (2)①直线y=-2x-1与y轴、直线x=2的交点坐标分别为D(0,-1) E(2,-5).

      过点BBGx轴,与y轴交于F、直线x=2交于G

      则BG⊥直线x=2,BG=4.

   在RtBGC中,BC=.

CE=5,

CB=CE=5.  ……………………(9分)

②过点E作EHx轴,交y轴于H

则点H的坐标为H(0,-5).

又点FD的坐标为F(0,3)、D(0,-1),

FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°.

      ∴ △DFB≌△DHE (SAS),

BD=DE.

DBE的中点.          ………………………………(11分)

  (3)  存在.                ………………………………(12分)

      由于PB=PE,∴ 点P在直线CD上,

∴ 符合条件的点P是直线CD与该抛物线的交点.

      设直线CD对应的函数关系式为y=kx+b.

      将D(0,-1) C(2,0)代入,得. 解得  .

      ∴ 直线CD对应的函数关系式为y=x-1.

∵ 动点P的坐标为(x),

x-1=.           ………………………………(13分)

解得 .   ∴ .

∴ 符合条件的点P的坐标为()或().…(14分)

(注:用其它方法求解参照以上标准给分.)

试题详情

96.(08广东佛山25题)25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.

例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).

请你用上面的思想和方法对下面关于圆的问题进行研究:

(1) 如图1,在圆O所在平面上,放置一条直线(和圆O分别交于点AB),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?

(2) 如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心两条直线(与圆O分别交于点AB与圆O分别交于点CD).

请你根据所构造的图形提出一个结论,并证明之.

(3) 如图3,其中AB是圆O的直径,AC是弦,D的中点,弦DEAB于点F. 请找出点C和点E重合的条件,并说明理由.

 

(08广东佛山25题解答)解:(1) 弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等.  (写对一个给1分,写对两个给2分)

(2) 情形1  如图21,AB为弦,CD为垂直于弦AB的直径.  …………………………3分

结论:(垂径定理的结论之一).  …………………………………………………………4分

证明:略(对照课本的证明过程给分).  …………………………………………………7分

情形2  如图22,AB为弦,CD为弦,且ABCD在圆内相交于点P.

结论:.

证明:略.

情形3 (图略)AB为弦,CD为弦,且在圆外相交于点P.

结论:.

证明:略.

情形4  如图23,AB为弦,CD为弦,且ABCD.

结论:  =   .

证明:略.

(上面四种情形中做一个即可,图1分,结论1分,证明3分;

其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)

(3) 若点C和点E重合,

则由圆的对称性,知点C和点D关于直径AB对称. …………………………………8分

,则.………………………………9分

D是   的中点,所以

.………………………………………………………10分

解得.……………………………………………………………11分

(若求得等也可,评分可参照上面的标准;也可以先直觉猜测点BC是圆的十二等分点,然后说明)

 

试题详情


同步练习册答案