9.如图11,已知二次函数的图像经过三点A,B,C,它的顶点为M,又正比例函数的图像于二次函数相交于两点D、E,且P是线段DE的中点。
⑴求该二次函数的解析式,并求函数顶点M的坐标;
⑵已知点E,且二次函数的函数值大于正比例函数时,试根据函数图像求出符合条件的自变量的取值范围;
⑶当时,求四边形PCMB的面积的最小值。
[参考公式:已知两点,,则线段DE的中点坐标为]
47.(08四川泸州)(本题答案暂缺)四(本大题 10分)
46.(08四川凉山)25.(9分)如图,在中,是的中点,以为直径的交的三边,交点分别是点.的交点为,且,.
(1)求证:.
(2)求的直径的长.
(3)若,以为坐标原点,所在的直线分别为轴和轴,建立平面直角坐标系,求直线的函数表达式.
(08四川凉山25题解析)25.(9分)
(1)连接
是圆直径,,即
,.··············································································· 1分
.在中,.······················· 2分
(2)是斜边的中点,,,
又由(1)知,.
又,与相似·················································· 3分
··········································································· 4分
又,
,,···································· 5分
设,,,
直径.···························································································· 6分
(3)斜边上中线,
在中,,··························· 7分
设直线的函数表达式为,
根据题意得,
解得
直线的函数解析式为(其他方法参照评分)······················· 9分
25.如图10,已知抛物线经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式.
(2)设此抛物线与直线相交于点A,B(点B在点A的右侧),平行于轴的直线与抛物线交于点M,与直线交于点N,交轴于点P,求线段MN的长(用含的代数式表示).
(3)在条件(2)的情况下,连接OM、BM,是否存在的值,使△BOM的面积S最大?若存在,请求出的值,若不存在,请说明理由.
43.(08四川广安)(本题答案暂缺)七、解答题(本大题满分12分)
28. 如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且=3,sin∠OAB=.
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;
(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为,△QNR的面积,求∶的值.
42.(08四川成都)(本题答案暂缺)四、(共12分)
39.(08山西省卷)(本题答案暂缺)26.(本题14分)如图,已知直线的解析式为,直线与x轴、y轴分别相交于A、B两点,直线经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线从点C向点B移动。点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒()。
(1)求直线的解析式。
(2)设△PCQ的面积为S,请求出S关于t的函数关系式。
(3)试探究:当t为何值时,△PCQ为等腰三角形?
40(08山西太原)29.(本小题满分12分)
如图,在平面直角坐标系中,直线与交于点,分别交轴于点和点,点是直线上的一个动点.
(1)求点的坐标.
(2)当为等腰三角形时,求点的坐标.
(3)在直线上是否存在点,使得以点为顶点的四边形是平行四边形?如果存在,直线写出的值;如果不存在,请说明理由.
(08山西太原29题解析)29.解:(1)在中,当时,,
,点的坐标为.···································································· 1分
在中,当时,,点的坐标为(4,0). 2分
由题意,得解得
点的坐标为.················································································ 3分
(2)当为等腰三角形时,有以下三种情况,如图(1).设动点的坐标为.
由(1),得,.
①当时,过点作轴,垂足为点,则.
.
,点的坐标为.··········································· 4分
②当时,过点作轴,垂足为点,则.
,,
.
解,得(舍去).此时,.
点的坐标为.·········································································· 6分
③当,或时,同理可得.·············· 9分
由此可得点的坐标分别为.
评分说明:符合条件的点有4个,正确求出1个点的坐标得1分,2个点的坐标得3分,3个点的坐标得5分,4个点的坐标得满分;与所求点的顺序无关.
(3)存在.以点为顶点的四边形是平行四边形有以下三种情形,如图(2).
①当四边形为平行四边形时,.·································· 10分
②当四边形为平行四边形时,.··································· 11分
③当四边形为平行四边形时,.······························· 12分
41(08陕西省卷)25、(本题满分12分)
某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。
如图,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学。点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处。
为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:
方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;
方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;
方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值。
综上,你认为把供水站建在何处,所需铺设的管道最短?
(08陕西省卷25题解析)25、解:方案一:由题意可得:MB⊥OB,
∴点M到甲村的最短距离为MB。…………………(1分)
∵点M到乙村的最短距离为MD,
∴将供水站建在点M处时,管道沿MD、MB线路铺设的长度之和最小,
即最小值为MB+MD=3+ (km)…………………(3分)
方案二:如图①,作点M关于射线OE的对称点M′,则MM′=2ME,
连接AM′交OE于点P,PE∥AM,PE=。
∵AM=2BM=6,∴PE=3 …………………(4分)
在Rt△DME中,
∵DE=DM·sin60°=×=3,ME==×,
∴PE=DE,∴ P点与E点重合,即AM′过D点。…………(6分)
在线段CD上任取一点P′,连接P′A,P′M,P′M′,
则P′M=P′M′。
∵A P′+P′M′>AM′,
∴把供水站建在乙村的D点处,管道沿DA、DM线路铺设的长度之和最小,
即最小值为AD+DM=AM′=………(7分)
方案三:作点M关于射线OF的对称点M′,作M′N⊥OE于N点,交OF于点G,
交AM于点H,连接GM,则GM=GM′
∴M′N为点M′到OE的最短距离,即M′N=GM+GN
在Rt△M′HM中,∠MM′N=30°,MM′=6,
∴MH=3,∴NE=MH=3
∵DE=3,∴N、D两点重合,即M′N过D点。
在Rt△M′DM中,DM=,∴M′D=…………(10分)
在线段AB上任取一点G′,过G′作G′N′⊥OE于N′点,
连接G′M′,G′M,
显然G′M+G′N′=G′M′+G′N′>M′D
∴把供水站建在甲村的G处,管道沿GM、GD
线路铺设的长度之和最小,即最小值为
GM+GD=M′D=。 …(11分)
综上,∵3+<,
∴供水站建在M处,所需铺设的管道长度最短。 …………(12分)
61.(08浙江义乌)(本题答案暂缺)24.如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线.将直线平移,平移后的直线与轴交于点D,与轴交于点E.
(1)将直线向右平移,设平移距离CD为(t0),直角梯形OABC被直线扫过的面积(图中阴影部份)为,关于的函数图象如图2所示, OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
①求梯形上底AB的长及直角梯形OABC的面积;
②当时,求S关于的函数解析式;
(2)在第(1)题的条件下,当直线向左或向右平移时(包括与直线BC重合),在直线AB上是否存在点P,使为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com