0  204051  204059  204065  204069  204075  204077  204081  204087  204089  204095  204101  204105  204107  204111  204117  204119  204125  204129  204131  204135  204137  204141  204143  204145  204146  204147  204149  204150  204151  204153  204155  204159  204161  204165  204167  204171  204177  204179  204185  204189  204191  204195  204201  204207  204209  204215  204219  204221  204227  204231  204237  204245  447090 

4、方程 x 2  = x 的解是­__________________

试题详情

3、如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如右图所示,则打包带的长至少要_________ (单位:mm)(用含x、y、z的代数式表示)

试题详情

2、据有关资料显示,长江三峡工程电站的总装机容量是18200000千瓦,请你用科学记数法表示电站的总装机容量,应记为     千瓦 

试题详情

1、已知点P(-2,3),则点P关于x轴对称的点坐标是(     )

试题详情

29、已知半径为R的⊙经过半径为r的⊙O的圆心,⊙O与⊙交于E、F两点. 

(1)如图(1),连结00'交⊙O于点C,并延长交⊙于点D,过点C作⊙O的切线交⊙于A、B两点,求OA·OB的值;  

(2)若点C为⊙O上一动点,①当点C运动到⊙时,如图(2),过点C作⊙O的切线交⊙,于A、B两点,则OA·OB的值与(1)中的结论相比较有无变化?请说明理由.

②当点C运动到⊙外时,过点C作⊙O的切线,若能交⊙于A、B两点,如图(3),则OA·OB的值与(1)中的结论相比较有无变化?请说明理由.

        

试题详情

28、如图:把一个等腰直角三角形ABC沿斜边上的高线CD(裁剪线)剪一刀,从这个三角形中剪下一部分,与剩下部分能拼成一个平行四边形ABCD(见示意图a)注意:以下探究过程中有画图要求的,工具不限,不必写画法和证明。

探究一:(1)想一想:判断四边形ABCD是平行四边形的依据是    

(2)做一做:按上述的裁剪方法,请你拼一个与图a位置或形状不同的平行四边形,并在图b中画出示意图。

探究二:在等腰直角三角形ABC中,请你找出其它的裁剪线,把分割成的两部分拼出不同类型的特殊四边形。

(1)试一试:你能拼得所有不同类型的特殊四边形有    ,它们的裁剪线分别是     

(2)画一画:请在图c中画出一个你拼得的特殊四边形示意图。

  (a)          (b)         (c)

试题详情

26、已知:如图,AB是⊙O的一条弦,点C为的中点,CD是⊙O的直径,过C点的直线交AB所在直线于点E,交⊙O于点F。

(1)判定图中的数量关系,并写出结论;

(2)将直线绕C点旋转(与CD不重合),在旋转过程中,E点、F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明。

     

试题详情

25、如图,分别表示一种白炽灯和一种节能灯的费用(费用=灯的售价+电费,单位:元)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样。

(1)根据图象分别求出的函数关系式;

(2)当照明时间为多少时,两种灯的费用相等?

(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)。

试题详情

24、在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半.下面分别是小明和小颖的设计方案.

    

(1)你认为小明的结果对吗?请说明理由.

(2)请你帮助小颖求出图中的x(精确到0.1m)

(3)你还有其他的设计方案吗?请在图3中画出你所设计的草图,并加以说明.

试题详情


同步练习册答案