26.(本小题满分13分)
如图,抛物线经过三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标.
25.(本小题满分11分)
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
24.(本小题满分10分)
在全市中学运动会800m比赛中,甲乙两名运动员同时起跑,刚跑出200m后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩.图中分别表示甲、乙两名运动员所跑的路程y(m)与比赛时间x(s)之间的关系,根据图像解答下列问题:
(1)甲摔倒前,________的速度快(填甲或乙);
(2)甲再次投入比赛后,在距离终点多远处追上乙?
23.(本小题满分9分)
如图,AC是的直径,PA,PB是的切线,A,B为切点,AB=6,PA=5.
求(1)的半径;
(2)的值.
22.(本小题满分7分)
如图,A,B是公路l(l为东西走向)两旁的两个村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东方向上.
(1)求出A,B两村之间的距离;
(2)为方便村民出行,计划在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置(保留清晰的作图痕迹,并简要写明作法).
21.(本小题满分7分)
为了了解全校1800名学生对学校设置的体操、球类、跑步、踢毽子等课外体育活动项目的喜爱情况,在全校范围内随机抽取了若干名学生.对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).
(1) 在这次问卷调查中,一共抽查了多少名学生?
(2) 补全频数分布直方图;
(3) 估计该校1800名学生中有多少人最喜爱球类活动?
20.(本小题满分6分)
解不等式组,并把解集在数轴上表示出来.
19.如图,过原点的直线l与反比例函数的图象交于M,N两点,根据图象猜想线段MN的长的最小值是___________.
18.如图,在菱形ABCD中,,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则________度.
17.若一个圆锥的底面积是侧面积的,则该圆锥侧面展开图的圆心角度数是____ _度.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com