0  204188  204196  204202  204206  204212  204214  204218  204224  204226  204232  204238  204242  204244  204248  204254  204256  204262  204266  204268  204272  204274  204278  204280  204282  204283  204284  204286  204287  204288  204290  204292  204296  204298  204302  204304  204308  204314  204316  204322  204326  204328  204332  204338  204344  204346  204352  204356  204358  204364  204368  204374  204382  447090 

25、(本题满分7分)

证明:(1)连结OD. ························································································· 1分

OE分别是BCAC中点得OEAB

∴∠1=∠2,∠B=∠3,又OB=OD

∴∠2=∠3.

OD=OCOE=OE

∴△OCE≌△ODE

∴∠OCE=ODE

又∠C=90°,故∠ODE =90°.  ································ 2分

DE是⊙O的切线.  ·········································· 3分

(2)在Rt△ODE中,由DE=2

  ····························································· 5分

又∵OE分别是CBCA的中点

AB=2·

   ∴所求AB的长是5cm.  ····················································································· 7分

试题详情

24.(本题满分6分)

(1)方法一:作 BC′= BCDC′=DC

   方法二:作∠C′BD=CBD,取BC′=BC,连结DC′

   方法三:作∠C′DB=∠CDB,取DC′=DC,连结BC′

   方法四:作C′C关于BD对称,连结 BC′DC′

……

以上各种方法所得到的△BDC′都是所求作的三角形.

   只要考生尺规作图正确,痕迹清晰都给3分.

(2)解:∵△C′BD与△CBD关于BD对称,

∴∠EBD=CBD

又∵矩形ABCDADBC

∴∠EDB=∠CBD

∴∠EBD=EDBBE = DE

在Rt△ABE中,AB2+AE2=BE2,而AB=5,BC=12.

∴52+(12-BE)2=BE2  ··············································································· 5分 

∴所求线段BE的长是.············································································ 6分

试题详情

23、(本题满分6分)

解:(1)根据题意列表如下:


1
2
3
4
1
 
(1,2)
(1,3)
(1,4)
2
(2,1)
 
(2,3)
(2,4)
3
(3,1)
(3,2)
 
(3,4)
4
(4,1)
(4,2)
(4,3)
 

由以上表格可知:有12种可能结果  ·········································································· 3分

(注:用其它方法得出正确的结果,也给予相应的分值)

(2)在(1)中的12种可能结果中,两个数字之积为奇数的只有2种,

所以,P(两个数字之积是奇数).······························································ 6分

试题详情

22.(本题满分6分)

解:延长ACON于点E,········································· 1分

ACON

OEC=90°,································································· 2分

∵四边形ABCD是矩形,

∴∠ABC=90°,AD=BC

又∵∠OCE=ACB

∴∠BAC=O=25°, ···················································· 3分

在Rt△ABC中,AC=3,

BC=AC·sin25°≈1.27  ················································· 5分

AD≈1.27  ································································ 6分

(注:只要考生用其它方法解出正确的结果,给予相应的分值)

试题详情

21.(本题共2小题;第(1)题5分,第(2)题5分,共10分)

 (1) 解:原式 ································································· 4分

 ······························································································ 5分

(2) 解:方程两边同乘,得 ································································· 1分

 ································································· 3分

    解这个方程,得  x=2  ············································································· 4分

检验:当x=2时,=0,所以x=2是增根,原方程无解.················ 5分

试题详情

9.  45   ;     10.2  ;      11.;      12.

试题详情

5.  甲   ;    6.;    7.;     8.  13   ;

试题详情

1.  2009  ;    2.;  3. 2.124×104  ;    4.  ;

试题详情

28.(本题满分10分)

 如图,抛物线的顶点为A,与y 轴交于点B

(1)求点A、点B的坐标.

(2)若点Px轴上任意一点,求证:

(3)当最大时,求点P的坐标.      

贺州市2009年初中毕业升学考试数学评分标准

试题详情

27.(本题满分8分)

图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,∠A=30o,∠E= 45o∠EDF=∠ACB=90 o DEAC于点GGMABM

(1)如图①,当DF经过点C   时,作CNABN,求证:AM=DN

(2)如图②,当DFAC时,DFBCH,作HNABN,(1)的结论仍然成立,请你说明理由.

试题详情


同步练习册答案