8.一个函数的图象关于轴成轴对称图形时,称该函数为偶函数. 那么在下列四个函数①
;②
;③
;④
中,偶函数是 (填出所有偶函数的序号).
7.如图3,已知,∠1=130o,∠2=30o,则∠C= .
6.如图2,△ABC向右平移4个单位后得到△A′B′C′,则A′点的坐标是 .
5.如图1,已知点C为反比例函数上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为 .
4.一个圆锥的母线长为5cm,底面圆半径为3 cm,则这个圆锥的侧面积是 cm2(结果保留
).
3.已知△ABC中,BC=6cm,E、F分别是AB、AC的中点,那么EF长是 cm.
2.因式分解:
.
1.3的倒数等于 .
25.解:(1)依条件有,
.
由
知
.
∴由
得
.
∴.
将的坐标代入抛物线方程,
得.
∴抛物线的解析式为.····································································· 3分
(2)设,
,
.
∴
设,则
∴,
(舍去
)
此时点与点
重合,
,
,
,
则为等腰梯形.······························································································· 3分
(3)在射线上存在一点
,在射线
上存在一点
.
使得,且
成立,证明如下:
当点如图①所示位置时,不妨设
,过点
作
,
,
,垂足分别为
.
若
.由
得:
,
.
又
.············································································································· 2分
当点在如图②所示位置时,
过点作
,
,
垂足分别为.
同理可证.
.
又,
,
.············································································································· 1分
当在如图③所示位置时,过点
作
,垂足为
,
延长线,垂足为
.
同理可证.
.············································································································· 1分
注意:分三种情况讨论,作图正确并给出一种情况证明正确的,同理可证出其他两种情况的给予4分;若只给出一种正确证明,其他两种情况未作出说明,可给2分,若用四点共圆知识证明且证明过程正确的也没有讨论三种情况的.只给2分.
24.解:(1)
.
其证明如下:
∵是
的平分线,
.
∵,∴
.
∴.
∴.
同理可证.
∴.······················································· 3分
(2)四边形不可能是菱形,若
为菱形,则
,而由(1)可知
,在平面内过同一点
不可能有两条直线同垂直于一条直线.············································································· 3分
(3)当点运动到
中点时,
,
,则四边形
为
,要使
为正方形,必须使
.
∵,∴
,∴
是以
为直角的直角三角形,
∴当点为
中点且
是以
为直角的直角三角形时,
四边形是正方形.····························································································· 3分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com