某药品两次升价,零售价升为原来的 1.2倍,已知两次升价的百分率一样,求每次升价的百分率(精确到0.1%)
解,设原价为元,每次升价的百分率为,根据题意,得
解这个方程,得
由于升价的百分率不可能是负数,所以不符合题意,因此符合题意要求的为
答:每次升价的百分率为9.5%。
分析:“两次降价的百分率一样”,指的是第一次和第二次降价的百分数是一个相同的值,即两次按同样的百分数减少,而减少的绝对数是不相同的,设每次降价的百分率为,若原价为,则第一次降价后的零售价为,又以这个价格为基础,再算第二次降价后的零售价。
思考:原价和现在的价格没有具体数字,如何列方程?请同学们联系已有的知识讨论、交流。
解 设原价为1个单位,每次降价的百分率为x.根据题意,得
(1-x) 2=
解这个方程,得
x=
由于降价的百分率不可能大于1,所以x=不符合题意,因此符合本题要求的x为
≈29.3%.
答:每次降价的百分率为29.3%.
百分数的概念在生活中常常见到,而量的变化率更是经济活动中经常接触,下面,我们就来研究这样的问题。
问题:某商品经两次降价,零售价降为原来的一半,已知两次降价的百分率一样。求每次降价的百分率。(精确到0.1%)
P36 练习1、2
小结:
让学生反思、归纳、总结,应用一元二次方程解实际问题,要认真审题,要分析题意,找出数量关系,列出方程,把实际问题转化为数学问题来解决。求得方程的解之后,要注意检验是否任命题意,然后得到原问题的解答。
作业:
例1.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长。
解:设截去正方形的边长x厘米,底面(图中虚线线部分)长等于 厘米,宽等于 厘米,底面= 。
请同学们自己列出方程并解这个方程,讨论它的解是否符合题意。
由学生回答解题过程,教师板书:
解 设截去正方形的边长为x厘米,根据题意,得
(60-2x) (40-2x) =800
解方程得
,,
经检验,不符合题意,应舍去,符合题意的解是
答:截去正方形的边长为10厘米。
3.1和2说明了什么问题?
让学生交流讨论、体会到把实际问题转化为数学问题来解决,求得方程的解,不一定是原问题的解答,因此,要注意是检验解是否符合题意。
作为应用题,还应作答。
2、所求、都符合题意吗?
让学生思考、分析,真正理解负数根不符合题意,应舍去符合题意的解是:
请同学们先看看P26页问题1,要想解决§22.1的问题1,首先要解方程,同学伞能解这个方程吗?
让学生动手解题并口答结果:,
提问:
1、所求、都是所列方程的解吗?
3、现在,你能解决§22.1的问题1了吗?
2、用多种方法解方程
让学生尝试用多种方法解方程,归结为:
解法1:将方程化为,直接开平方,得
解得,。
解法2:将方程化为一般形式,进而转化为,用配方法可求方程的解。
解法3:将方程化为一般形式,用公式法求解,其中。
提问:用哪种方法解方程更简便?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com