6、试一试:已知一个三角形的三个内角分别为、、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?
(所画出的三角形都是相似的,但大小不一定相同)。
三个对应角相等的两个三角形不一定全等。
5、练习:
P84 练习1、2
4、范例:
例1 如图24.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA.
解:已知 AD=BC,AB=DC,
又因为AC是公共边,由(S.S.S.)全等识别法,可知
△ABC≌△CDA
3、问题3、你用这个“SSS”三角形全等的识别法解释三角形具有稳定性吗?
(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)
2、问题2:你能用相似三角形的识别法解释这个(SSS)三角形全等的识别法吗?
(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。)
1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?
做一做:给你三条线段、、,分别为、、,你能画出这个三角形吗?
先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。
步骤:
(1)画一线段AB使它的长度等于c(4.8cm).
(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.
(3)连结AC、BC.
△ABC即为所求
把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?
换三条线段,再试试看,是否有同样的结论
请你结合画图、对比,说说你发现了什么?
同学们各抒己见,教师总结:给定三条线段,如果它们能组成三角形,那么所画的三角形都是全等的。
这样我们就得到识别三角形全等的一种简便的方法: 如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S.S.S.)。
请问同学,老师在黑板上画得两个三角形,△ABC与△全等吗?你是如何识别的。
(同学们各抒己见,如:动手用纸摹下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等。)
上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全
等。满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究。
1.教材P.154中B组2.
3.常用的辅助线:
(1)两圆在各种情况下常考虑添连心线;
(2)两圆外切时,常添内公切线;
(3)两圆内切时,常添外公切线;
(4)计算公切线长时,常平移公切线,使它过其中一个圆的圆心.
2.公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com