20.如图11,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE·PO.(1)求证:PC是⊙O的切线;(2)若OE∶EA=1∶2, PA=6,求⊙O的半径;(3)求sinPCA的值.(12分)
19.如图10,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:
(1) AC是⊙O的切线.(2)若AD∶DB=3∶2,AC=15,求⊙O的直径.(12分)
图10
18.如图9,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°,求证:DC是⊙O的切线.(10分)
图9
17.如图8,已知AB是⊙O的直径,AC切圆O于A,CB交圆O于D,AC=2,CD=3,求tanB的值.(10分)
图8
16.如图7,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB, BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,过点P从点A移到点B时,A′B′的中点的位置
A.在平分AB的某直线上移动
B.在垂直AB的某直线上移动
C.在弧AMB上移动
D.保持固定不移动
15.如图6,BC是⊙O直径,点A为CB延长线上一点,AP切⊙O于点P,若AP=12,AB∶BC=4∶5,则⊙O的半径等于
A.4 B.5 C.6 D.7
14.如图5,点P为弦AB上一点,连结OP,过PC作PC⊥OP,PC交⊙O于C,若AP=4, PB=2,则PC的长是
A. B.2 C.2 D.3
13.如图4,AB是⊙O的直径,弦AC、BD相交于P,则CD∶AB等于
A.sinBPC B.cosBPC C.tanBPC D.cotBPC
图4 图5 图6 图7
12.在⊙O中,弦AB和CD相交于点P,若PA=4,PB=7,CD=12,则以PC 、PD 的长为根的一元二次方程为
A.x2+12x+28=0
B.x2-12x+28=0
C.x2-11x+12=0
D.x2+11x+12=0
11.P是⊙O外一点,PA、 PB切⊙O于点A、B,Q是优弧AB上的一点,设∠APB=α,∠AQB=β ,则α与β的关系是
A.α=β B.α+β=90°
C.α+2β=180° D.2α+β=180°
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com