0  204595  204603  204609  204613  204619  204621  204625  204631  204633  204639  204645  204649  204651  204655  204661  204663  204669  204673  204675  204679  204681  204685  204687  204689  204690  204691  204693  204694  204695  204697  204699  204703  204705  204709  204711  204715  204721  204723  204729  204733  204735  204739  204745  204751  204753  204759  204763  204765  204771  204775  204781  204789  447090 

 学生练习

1.书上P143.练习.1.  巩固用频率估计概率的方法.

试题详情

2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.

 想一想(学生交流讨论)

问题2.频率与概率有什么区别与联系?

从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.

说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.

试题详情

问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?

学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.

通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.

归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.

那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.

注意指出:

1.概率是随机事件发生的可能性的大小的数量反映.

试题详情

5.下面我们能否研究一下“反面向上”的频率情况?

学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.

教师归纳:

(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.

(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.

说明:这个环节,让学生亲身经历了猜想试验--收集数据--分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.

试题详情

3.各组汇报实验结果.

由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.

提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.

在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性, 引导他们小组合作,进一步探究.

解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.

试题详情

2.教师巡视学生分组试验情况.

注意:

(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.

(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.

试题详情

1.教师布置试验任务.

(1)明确规则.

把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.

(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上” 的频数及 “正面朝上”的频率,整理试验的数据,并记录下来..

试题详情

教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.

学生:抓阄、抽签、猜拳、投硬币,……

教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)

追问,为什么要用抓阄、投硬币的方法呢?

由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大

在学生讨论发言后,教师评价归纳.

用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.

质疑:那么,这种直觉是否真的是正确的呢?

引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.

说明:现实中不确定现象是大量存在的, 新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.

试题详情

6.如图5,有四张编号为1,2,3,4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.

(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?

(2)从四张卡片中随机抽取一张贴在如图6所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.

 

C新题快递(总分20分,时间15分钟)

在街头巷尾会遇到一类“摸球游戏”,摊主的游戏道具是把分别标有数字1,2,3的3个白球和标有数字4,5,6的3个黑球(球除颜色外,其它均相同),放在口袋里,让你摸球.规定:每付3元钱就玩一局,每局连续摸两次,每次只能摸一个,第一次摸完后把球放回口袋里搅匀后再摸一次,若前后两次摸得的都是白球,摊主就送你10元钱的奖品.

(1)用列表法列举出摸出的两球可能出现的结果;

(2)求出获奖的概率;

(3)如果有50个人每人各玩一局, 摊主会从这些人身上骗走多少钱?请就这一结果写一句劝诫人们不要参与摸球游戏的忠告语.

试题详情


同步练习册答案