不管求什么事件的概率,我们都可以做大量的试脸.求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,是否有比较简单的方法,这
种方法就是我们今天要介绍的方法-列举法,
把学生分为10组,按要求做试验并回答问题.
1.从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?其抽到1的概率为多少?
教学反思:
25.2 用列举法求概率(第三课时) 郁昌云 教学目标: 1. 进一步理解有限等可能性事件概率的意义。 2. 会用树形图求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率。 3. 进一步提高分类的数学思想方法,掌握有关数学技能(树形图)。 教学重点:正确鉴别一次试验中是否涉及3个或更多个因素。 教学难点;用树形图法求出所有可能的结果。 一、解决问题,提高能力 例1 同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点子数相同;(2)两个骰子的点子数的和是9;(3)至少有一个骰子的点数为2。 分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有很多,我们用怎样的方法才能既不重复又不遗漏地求出所有可能的结果呢?这个问题要让学生充分发表意见,在次基础上再使学生认识到列表法可以清楚地列出所有可能的结果,体会其优越性。 列出表格。也可用树形图法。 其实,求出所有可能的结果的方法不止是列表法,还有树形图法也是有效的方法,要让学生体验它们各自的特点,关键是对所有可能结果要做到:既不重复也不遗漏。 板书解答过程。 思考:教科书第152页的思考题。 例2 教科书第152页例6。 分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?你打算用什么方法求得? 在学生充分思考和交流的前提下,老师介绍树形图的方法。 第一步可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行。 第二步可能产生的结果有C、D和E,三者出现的可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D和E。 第三步可能产生的结果有两个H和I,两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I。(如果有更多的步骤可依上继续) 第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数。再找出符合要求的种数,就可以利用概率和意义计算概率了。 教师要详细地讲解以上各步的操作方法。 写出解答过程。 问:此题可以用列表法求出所有可能吗? 小结:教科书第153页左边的结论。 思考:教科书第153页的思考题。 二、练习,巩固技能 教科书第154页练习。 练习1是每次试验涉及2个因素的问题,共有36种可能的结果; 练习2是每次试验涉及3个因素的问题,共有27种可能的结果。 尽管这2个问题可能的结果都比较多,但用树形图的方法并不难求得,重要的是要让学生正确把握题意,鉴别每次试验涉及的因素以及这些因素的顺序。 二、单元小结 问题:(要求学生思考和讨论) 1. 本单元学习的概率问题有什么特点? 2. 为了正确地求出所求的概率,我们要求出各种可能的结果,那么通常是用什么方法求出各种可能的结果呢? 特点:一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的。 通常可用列表法求得各种可能结果,具体有直接分析列出可能结果,列表法和树形图法。 三、提高练习 教科书第155页习题25.2第9题。 这是一道正确理解概率意义的问题,在学生深入思考的基础上教师要着重分析解题的思路。 四、布置作业: 教学反思 |
1.本节课的例题,每次试验有什么特点? 2.用列表法求出所有可能的结果时,要注意表格的设计,做到使各种可能结果既不重复也不遗漏。
3.课内练习:书本P151的练习。
2. 问题:“同时掷两枚硬币”,与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?
同时掷两枚硬币与先后两次掷一枚硬币有时候是有区别的。比如在先后投掷的时候,就会有这样的问题:先出现正面后出现反面的概率是多少?这与先后顺序有关。同时投掷两枚硬币时就不会出现这样的问题。
1、教材 综合运用 拓广探索
教学反思
25.2 用列举法求概率(第二课时) 郁昌云 教学目标: 1. 理解“包含两步,并且每一步的结果为有限多个情形”的意义。 2. 会用列表的方法求出:包含两步,并且每一步的结果为有限多个情形,这样的试验出现的所有可能结果。 3. 体验数学方法的多样性灵活性,提高解题能力。 教学重点:正确理解和区分一次试验中包含两步的试验。 教学难点:当可能出现的结果很多时,简洁地用列表法求出所有可能结果。 一、比较,区别 出示两个问题: 1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果? 2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果? 要求学生讨论上述两个问题的区别,区别在于这两个问题的每次试验(摸球)中的元素不一样。 二、问题解决 1.例1 教科书第150页例4。 要求学生思考掷两枚硬币产生的所有可能结果。 学生可能会认为结果只有:两个都为正面,一个正面一个反面和两个都是反面这样3种情形,要讲清这种想法的错误原因。 列出了所有可能结果后,问题容易解决。或采用列表的方法,如:
让学生初步感悟列表法的优越性。 本节课应用列举法求概率。 教材 练习,, 练习 2.一次试验中,各种结果发生的可能性相等. 对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能 的试验结果中所占的比分析出事件的概率. 因此,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相 等,事件A包含其中的、种结果,那么李件A发生的概率为P(A)= 例1.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下 列事件的概率. (1)牌上的数字为3; (2)牌上的数字为奇数; (3)牌上的数字为大于3且小于6. 分析:因为从6张牌子任抽取一张符合刚才总结的试验的两个特点,所以可用P(A)= 来求解. 解:任抽取一张牌子,其出现数字可能为1,2,3,4,5,6,共6种,这些数字出现的可 能性相同. (1)P(点数为3)=1/6; (2)P(点数为奇数)=3/6=1/2; (3)牌上的数字为大于3且小于6的有4,5两种. 所以 P(点数大于3且小于6)=1/3 例2:如图25-7所示,有一个转盘,转盘分成4个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指 针所指的位里(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率 (1)指针指向绿色; (2)指针指向红色或黄色 (3)指针不指向红色. 分析:转一次转盘,它的可能结果有4种-有限个,并且各种结果发生的可能性相等.因此,它可以应用“ P(A)= ”问题,即“列举法”求概率. 解,(1) P(指针,向绿色)=1/4; (2) P(指针指向红色或黄色)=3/4; (3)P(指针不指向红色)=1/2 例3如图25-8所示是计算机中“扫雷“游戏的画面,在个小方格的正方形雷区中,随机埋藏着颗地雷,每个小方格内最多只能藏颗地雷。 小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号的方格相邻的方格记为区域(画线部分),区域外的部分记为区域,数字表示在区域中有颗地雷,那么第二步应该踩区域还是区域? 分析:第二步应该踩在遇到地雷小的概率,所以现在关键求出在区域、区域的概率并比较。 解:(1)区域的方格共有个,标号表示在这个方格中有个方格各藏颗地雷,因此,踩区域的任一方格,遇到地雷的概率是。 (2)区域中共有个小方格,其中有个方格内各藏颗地雷。因此,踩区域的任一方格,遇到地雷的概率是。 由于,所以踩区域遇到地雷的可能性大于踩区域遇到地雷的可能性,因而第二步应踩区域。 1.一次试验中,可能出现的结果有限多个. 同步练习册答案 湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区 违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。 ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号 |