问题1:你将用什么方法来研究上面提出的问题?
(画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察)
问题2:你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图象吗?
教学要点
1.让学生完成下表填空。
x |
… |
-3 |
-2 |
-1 |
0 |
1 |
2 |
3 |
… |
y=2x2 |
|
|
|
|
|
|
|
|
|
y=2(x-1)2 |
|
|
|
|
|
|
|
|
|
2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?
1.在同一直角坐标系内,画出二次函数y=-x2,y=-x2-1的图象,并回答:
(1)两条抛物线的位置关系。
(2)分别说出它们的对称轴、开口方向和顶点坐标。
(3)说出它们所具有的公共性质。
4.试说出函数y=x2,y=x2+2,y=x2-2的图象所具有的共同性质。
3.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线y=x2得到抛
物线y=x2+2和y=x2-2?
2.在同一直角坐标系内画出下列二次函数的图象,
y=x2,y=x2+2,y=x2-2
观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置。
你能说出抛物线y=x2+k的开口方向及对称轴、顶点的位置吗?
1.分别在同一直角坐标系中,画出下列各组两个二次函数的图象。
(1)y=-2x2与y=-2x2-2;
(2)y=3x2+1与y=3x2-1。
2.选用课时作业优化设计.
第一课时作业优化设计
2.你能说出函数y=ax2+k具有哪些性质?
1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com