0  204682  204690  204696  204700  204706  204708  204712  204718  204720  204726  204732  204736  204738  204742  204748  204750  204756  204760  204762  204766  204768  204772  204774  204776  204777  204778  204780  204781  204782  204784  204786  204790  204792  204796  204798  204802  204808  204810  204816  204820  204822  204826  204832  204838  204840  204846  204850  204852  204858  204862  204868  204876  447090 

1. 二次函数的图象的顶点在原点,且过点(2,4),求这个二次函数的关系式。

试题详情

2.选用课时作业优化设计,

每一课时作业优化设计

试题详情

1.P19习题  26.2 4.(1)、(3)、5。

试题详情

例1.如图所示,求二次函数的关系式。

   分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x=3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(-2,0),问题转化为已知三点求函数关系式。

   解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3。因为对称轴是直线x=3,所以B点坐标为(-2,0)。

设所求二次函数为y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到c=4,又由于其图象过(8,0)、(-2,0)两点,可以得到解这个方程组,得

   所以,所求二次函数的关系式是y=-x2+x+4

   练习:   一条抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。

试题详情

   问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系?

   让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的。

   问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗?

   分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,O点坐标为(2;0.8)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,0.8)三点,求这个二次函数的关系式。

   二次函数的一般形式是y=ax2+bx+c,求这个二次函数的关系式,跟以前学过求一次函数的关系式一样,关键是确定o、6、c,已知三点在抛物线上,所以它的坐标必须适合所求的函数关系式;可列出三个方程,解此方程组,求出三个待定系数。

   解:设所求的二次函数关系式为y=ax2+bx+c。

   因为OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,拱高OC=0.8m,

所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。

由已知,函数的图象过(0,0),可得c=0,又由于其图象过(2,0.8)、(4,0),可得到解这个方程组,得 所以,所求的二次函数的关系式为y=-x2+x。

   问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同?

   问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么?

   (第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易)

   请同学们阅渎P18例7。

试题详情

   如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?

分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。

   如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为:   y=ax2  (a<0)   (1)

   因为y轴垂直平分AB,并交AB于点C,所以CB= =2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。

   因为点B在抛物线上,将它的坐标代人(1),得   -0.8=a×22   所以a=-0.2

   因此,所求函数关系式是y=-0.2x2

   请同学们根据这个函数关系式,画出模板的轮廓线。

试题详情

5.如图,正方形EFGH的顶点在边长为a的正方形ABCD的边上,若AE=x,正方形EFGH的面积为y.

(1)    求出y与x之间的函数关系式;

(2)    正方形EFGH有没有最大面积?若有,试确定E点位置;若没有,说明理由.

答案:1、A  2、售价为35元时,在半月内可获得最大利润     3、(1)  (2) 

 (3)   4、①略  ②4倍   5、(1)y=2x2-2ax+a2   (2) 有.当点E是AB的中点时,面积最大.

试题详情

4.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v2来表示,其中v(千米/分)表示汽车的速度.

  ① 列表表示I与v的关系;

  ② 当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?

试题详情

3.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系是.请回答下列问题:

(1)    柱子OA的高度是多少米?

(2)    喷出的水流距水平面的最大高度是多少米?

(3)    若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?

试题详情

2.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,如果提高售价,才能在半月内获得最大利润?

试题详情


同步练习册答案