0  204693  204701  204707  204711  204717  204719  204723  204729  204731  204737  204743  204747  204749  204753  204759  204761  204767  204771  204773  204777  204779  204783  204785  204787  204788  204789  204791  204792  204793  204795  204797  204801  204803  204807  204809  204813  204819  204821  204827  204831  204833  204837  204843  204849  204851  204857  204861  204863  204869  204873  204879  204887  447090 

1.如图所示,在直角梯形ABCD中,∠A=∠D=90°,截取AE=BF=DG=x.已知AB=6,CD=3,AD=4.求四边形CGEF的面积S关于x的函数表达式和x的取值范围.

试题详情

5.某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误.

(1)求这条抛物线的函数关系式;

(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为m,问此次跳水会不会失误?并通过计算说明理由.

[本课学习体会]

试题详情

4.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图a)做成的立柱,为了计算所需不锈钢管立柱的总长度,设计人员利用图b所示的坐标系进行计算.

(1)求该抛物线的函数关系式;

(2)计算所需不锈钢管立柱的总长度.

试题详情

0.25m处出手,问:球出手时,他跳离地面的高度是多少?

                   B组

试题详情

3.如图,一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05m.

(1)建立如图所示的直角坐标系,求抛物线的函数关系式;

(2)该运动员身高1.8m,在这次跳投中,球在头顶上方

试题详情

2.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.

下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).

根据图象提供的信息,解答下列问题:

(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;

(2)求截止到几月末公司累积利润可达到30万元;

(3)求第8个月公司所获利润是多少万元?

试题详情

1.在一场足球赛中,一球员从球门正前方10米处将球踢起射向球门,当球飞行的水平距离是6米时,球到达最高点,此时球高3米,已知球门高2.44米,问能否射中球门?

试题详情

2.在一场篮球赛中,队员甲跳起投篮,当球出手时离地高2.5米,与球圈中心的水平距离为7米,当球出手水平距离为4米时到达最大高度4米.设篮球运行轨迹为抛物线,球圈距地面3米,问此球是否投中?

[本课课外作业]

A组

试题详情

1.在排球赛中,一队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?

试题详情

26. 3  实践与探索(1)

[本课知识要点]

会结合二次函数的图象分析问题、解决问题,在运用中体会二次函数的实际意义.

[MM及创新思维]

生活中,我们常会遇到与二次函数及其图象有关的问题,比如在2004雅典奥运会的赛场上,很多项目,如跳水、铅球、篮球、足球、排球等都与二次函数及其图象息息相关.你知道二次函数在生活中的其它方面的运用吗?

[实践与探索]

例1.如图26.3.1,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是,问此运动员把铅球推出多远?

解  如图,铅球落在x轴上,则y=0,

因此,

解方程,得(不合题意,舍去).

所以,此运动员把铅球推出了10米.

探索  此题根据已知条件求出了运动员把铅球推出的实际距离,如果创设另外一个问题情境:一个运动员推铅球,铅球刚出手时离地面m,铅球落地点距铅球刚出手时相应的地面上的点10m,铅球运行中最高点离地面3m,已知铅球走过的路线是抛物线,求它的函数关系式.你能解决吗?试一试.

例2.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.

(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?

(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?(精确到0.1m)

分析  这是一个运用抛物线的有关知识解决实际问题的应用题,首先必须将水流抛物线放在直角坐标系中,如图26.3.3,我们可以求出抛物线的函数关系式,再利用抛物线的性质即可解决问题. 

解  (1)以O为原点,OA为y轴建立坐标系.设抛物线顶点为B,水流落水与x轴交点为C(如图26.3.3).

由题意得,A(0,1.25),B(1,2.25),

因此,设抛物线为

将A(0,1.25)代入上式,得

解得             

所以,抛物线的函数关系式为

当y=0时,解得 x=-0.5(不合题意,舍去),x=2.5,

所以C(2.5,0),即水池的半径至少要2.5m.

(2)由于喷出的抛物线形状与(1)相同,可设此抛物线为

由抛物线过点(0,1.25)和(3.5,0),可求得h= -1.6,k=3.7.

所以,水流最大高度应达3.7m.

[当堂课内练习]

试题详情


同步练习册答案