11.如图,在Rt△ABC中,∠ACB=90°,BC>AC,以斜边AB 所在直线为x轴,以斜边AB上的高所在直线为y轴,建立直角坐标系,若OA2+OB2= 17, 且线段OA、OB的长度是关于x的一元二次方程x2-mx+2(m-3)=0的两个根.
(1)求C点的坐标;
(2)以斜边AB为直径作圆与y轴交于另一点E,求过A、B、E 三点的抛物线的关系式,并画出此抛物线的草图.
(3)在抛物线上是否存在点P,使△ABP与△ABC全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.
(三)多变题(8分)
10.如图所示,在直角坐标系xOy中,A,B是x轴上两点,以AB为直径的圆交y轴于点C,设过A、B、C三点的抛物线关系为y=x2-mx+n,若方程x2-mx+n=0两根倒数和为-2.
(1)求n的值;
(2)求此抛物线的关系式.
(二)多解题(8分)
9.已知抛物线y=2x2-kx-1与x轴两交点的横坐标,一个大于2,另一个小于2,试求k的取值范围.
(一)教材中的变型题(14分)
8.(教材P22问题3变型)画出函数y=x2-x- 的图象,根据图象回答问题:
(1)图象与x轴交点A的坐标_________,B点的坐标________,与y轴交点C 的坐标________,=________.(A点在B点左边).
(2)该函数的对称轴方程为_______,顶点P的坐标________,=______.
(3)当______时,y≤0;当x_______时,y≥0.
(4)抛物线开口向________,函数y有最_____值;当x=_____时,y最值=______.
7.某工厂生产A产品x吨所需费用为P元,而卖出x吨这种产品的售价为每吨Q元, 已知P=x2+5x+1000,Q=-+45.
(1)该厂生产并售出x吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式;
(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元? 这时每吨的价格又是多少元?
6.如图所示,一位篮球运动员在离篮圈水平距离为4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面距离为3.05m.
(1)建立如图所示的直角坐标系,求抛物线所对应的函数关系式;
(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?
5.利用函数图象求方程组 的解.
4.利用函数图象求2x2-x-3=0的解.
3.如图所示,长为1.2m的轻质杆OA可绕竖直墙上的O点自由转动,A端挂有G=8N的吊灯.现用长为0.8m的细绳,一端固定在墙上C点,另一端固定在杆上B点,而使杆在水平位置平衡.试求OB为多长时绳对杆的拉力最小,最小拉力为多少?
2.已知一条抛物线经过A(0,3),B(4,6)两点,对称轴是x=.
(1)求这条抛物线的关系式.
(2)证明:这条抛物线与x轴的两个交点中,必存在点C,使得对x轴上任意点D都有AC+BC≤AD+BD.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com