3.如何证明判别一个四边是平行四边形的方法?
性质:1.平行四边形对边相等
逆命题:两组对边分别相等的四边形是平行四边形。
性质:2.平行四边形对角相等
逆命题:两组对角分别相等的四边形是平行四边形。
性质:3.平行四边形两条对角钱互相平分
逆命题:两条对角钱互相平分的四边形是平行四边形。
性质:4.平行四边形两组对边分别平行
逆命题:两组对边分别平行的四边形是平行四边形。
议一议
一组对边平行且相等的四边形是平行四边形吗?如果是,请你证明它,并与同伴交流。
涉及到平行四边形判定的问题,应注意灵活选择不同的判定方法。从边看:
有三种判定方法:两组对边分别相等;两组对边分别平行;一组对边平行且相等。
从角看:
两组对角分别相等;
从对角线看:对角线互相平分。
随堂练习:
随堂练习 1、2、3
课堂小结:
在证明中,离不开线段的平行、相等,或角的相等关系,因此,除题目中已给出的线段平行、相等或角相等的条件外,都要通过三角形全等得到所需要的判定条件,总之,平行四边形的问题通常要转化成三角形问题来解决。
作业:
课本习题3.21、2
2.你能写出(1)中的逆命题吗?
3.关键:正确分析条件和结论,通过已知条件的推理,再运用结论的等价转换和逆推,寻求解决问题的思路.
教学过程:
提问:1.说一说平行四边形有那些性质?
2.难点;运用综合法证明问题的思路。
1.重点:掌握证明平行四边形的方法。
1.平行四边形(二)
知识与技能目标:
经历探索、猜想、证明的过程,进一步发展推理论证的能力.
过程与方法目标:
能够用综合法证明平行四边形的判定定理.
情感态度与价值观目标:
感悟在证明过程中所运用的归纳、类比、转化等思想方法.
重点、难点、关键:
4.由平行四边形的性质可以得出一些角与线段的相等关系,特别地说,可知:夹在两条平行线间的平行线段相等、平行线间的距离处处相等.
随堂练习:
随堂练习 1、2
课堂小结:
引导学生探索证明的不同思路和方法、并进行适当的比较和讨论,以开阔学生的视野,培养学生的思维能力。
作业:
课本习题3.1 1、2
3.平行四边形是一种特殊的四边形,它的一些性质是进行有关证明或计算的基础.如,应用边的性质,可以求解边长、周长、对角线长,以及平行等问题;应用角的性质,可求解角的问题,应用对角线的性质,可证明两个三角形全等,再通过三角形全等研究角或线段之间的关系。
2.平行四边形的主要性质有:时边相等、对角线等,对边平行,对角线互相平分。
1.平行四边形是一类特殊的四边形,即两组对边分别平行的四边形,平行四边形是中心对称图形。它的对角线的交点为对称中心.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com