6.工程问题
工作量=工作效率×工作时间
工作效率=工作量÷工作时间
工作时间=工作量÷工作效率
完成某项任务的各工作量的和=总工作量=1
5.行程问题
基本量之间的关系
路程=速度×时间
时间=路程÷速度
速度=路程÷时间
(1)相遇问题
快行距+慢行距=原距
(2)追及问题
快行距-慢行距=原距
(3)航行问题
顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
4.市场经济问题
(1)商品利润=商品售价-商品成本价
(2)商品利润率=×100%
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
3.数字问题
一般可设个位数字为a,十位数字为b,百位数字为c.
十位数可表示为10b+a,
百位数可表示为100c+10b+a.
然后抓住数字间或新数、原数之间的关系找等量关系列方程.
2.若干应用问题等量关系的规律
(1)和、差、倍、分问题
增长量=原有量×增长率
现在量=原有量+增长量
(2)等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式
V=底面积×高=S·h=r2h
②长方体的体积
V=长×宽×高=abc
1.列一元一次方程解应用题的一般步骤
(1)审题:弄清题意.
(2)找出等量关系:找出能够表示本题含义的相等关系.
(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.
(4)解方程:解所列的方程,求出未知数的值.
(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.
3.4实际问题与一元一次方程(2)同步精练
◆阶段性内容回顾
13.(北京海淀区)白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于( ).
A.1 B.1.8 C.2 D.10
12.请同学们对以下情境提出问题,并讨论解答(必要时可对情境作适当补充):
某校七年级(2)班组织去风景区旅游,大部分同学先坐公共汽车前往,平均速度为26千米/时;5名负责后勤的同学晚半小时坐学校汽车出发,速度为60千米/时,同时到脚下.到达后发现乘坐缆车上山费用较大,且不能浏览沿途风景,于是商定:大部分步行上山,5名后勤改为先遣队,乘缆车上山,做好在山顶举行活动的准备,缆车速度是步行的3倍,步行同学中途在一个景点逗留了10分钟,到达山顶时比先遣队晚了半小时.
[中考真题实战]
11.为了准备小明三年后上高中的学费,他的父母准备现在拿出3000元参加教育储蓄,已知教育储蓄一年期利率为1.98%,二年期利率为2.25%,三年期利率为2.52%,请你帮小明的父母计算一下如何储蓄三年后得到的利息最多.
[开放探索创新]
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com