投影片(§ 3.7 A)
如图,某传送带的一个转动轮的半径为10cm
.
(1)转动轮转一周,传送带上的物品A被传送多少厘米?
(2)转动轮转1°,传送带上的物品A被传送多少厘米?
(3)转动轮转n°,传送带上的物品A被传送多少厘米?
[师]分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360°的圆心角,所以转动轮转1°,传送带上的物品A被传送圆周长的;转动轮转n°,传送带上的物品A被传送转l°时传送距离的n倍.
[生]解:(1)转动轮转一周.传送带上的物品A被传送2π×10=20πcm;
(2)转动轮转1°,传送带上的物品A被传送cm;
(3)转动轮转n°,传送带上的物品A被传送n×cm.
[师]根据上面的计算,你能猜想出在半径为R的圆中,n°的圆心角所对的弧长的计算公式吗?请大家互相交流.
[生]根据刚才的讨论可知,360°的圆心角对应圆周长2πR,那么1°的圆心角对应的弧长为,n°的圆心角对应的弧长应为1°的圆心角对应的弧长的n倍,即n×.
[师]表述得非常棒.
在半径为R的圆中,n°的圆心角所对的弧长(arclength)的计算公式为:
l=.
下面我们看弧长公式的运用.
3.圆的圆心角是多少度?
[生]若圆的半径为r,则周长l=2πr,面积S=πr2,圆的圆心角是360°.
1.圆的周长如何汁算?
2,圆的面积如何计算?
如图,两个同心圆被两条半径截得的的长为6,的长为10,又AC=12,求阴影部分ABDC的面积.
分析:要求阴影部分的面积,需求扇形COD的面积与扇形AOB的面积之差.根据扇形面积,已知,则需要求两个半径0C与OA,因为OC=OA+AC,AC已知,所以只要能求出OA即可.
解:设OA=R,0C=R十12,∠O=°,根据已知条件有:
得
∴3(R+12)=5R
∴R=18
∴OC=18+12=30
∴S=
所以阴影部分的面积为96.
2.课本P142习题 1、2、3
1.复习本课的内容;
3.探索弧长及扇形的面积之间的关系,并能已知一方求另一方。
2.探索扇形的面积公式,并运用公式进行计算;
本节课学习了如下内容:
1.探索弧长的计算公式,并运用公式进行计算;
4.随堂练习:课本P141 1、2
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com