2.学生活动、意义建构、数学理论:
结合问题情景,思考:解决这个问题的关键是什么?题中涉及哪些量?这些量之间的关系如何?你能找出表示问题意义的相等关系吗?用方程怎样表达?
方法一:用直接未知数.设甲、乙两城市间的路程为x km,相等关系:提速前的运行时间-提速后的运行时间=缩短时间.
方法二:用间接未知数.设提速前列车从甲地到乙地的运行时间为x 小时,相等关系:提速前的运行速度×运行时间=提速后的运行速度×运行时间,即80x=100(x-3).
建议只让学生多一些方法,但不要讲的太多.
1.情景创设:
(1)列车提速问题,见课本P115.
生活背景:从1997年到2004年,我国共进行了5次列车提速.
(2)见教师教学参考资料手机通讯话费付费方式
2.重、难点:分析问题,探寻等量关系列一元一次方程.
1.学习目标:
知识与技能:通过对具体实际生活问题的分析,进一步学会根据实际问题的意义设未知数并列出方程,了解一元一次方程的概念.
过程与方法:经历把实际问题抽象出数学问题的过程,体会方程是人们分析、解决实际问题的有效工具.
情感、态度与价值观:进一步领会方程与现实生活间的密切联系,感受数学建模思想的应用.
6.作业:见作业本。
5.课堂小结:
突出两条:一是什么叫做一个代数式的值?它与代数式的概念有什么不?二是求代数式的值的方法:先代入、后计算。
4.随堂练习:
“练习”第 1, 2题。
在做完练习后,可启发学生思考:前两题在问法上有什么不同。可告诉学生,前一题求的是当字母取不同的数值时,同一个代数式的值;而后一题求的是当两个字母分别取定某个数值时,不同的代数式的值。
3. 再接着讲教科书上的例2,将它作为例3。
这个例子的代数式的分母里出现了字母,此处可顺便提一下,求一个代数式的值时,字母的取值应使代数式有意义,如本例里字母a的取值不能是0,以便为“小结与复习”里讲求代数式的值时的字母取值范围问题作一下铺垫。
2. 接着讲教科书上的例1。
在书写例1的求解过程时,可以加上“当x=7,y=4,z=0时”,以有利于弄清代数式的值的区别。本例中的代数式含有3个字母,可强调代入时一定要按照顺序进行,不要代错;代入之后,则要强调运算的顺序:在有括号的情况下,先进行括号内的运算;在进行括号内的运算时,则应遵循先乘除后加减的规定,在教科书上的两个例题中,未涉及含1个字母的代数式。实际上从函数的角度看,以后学习的函数主要还是一元函数。因此如果时间允许,可考虑在例1之后补充一个涉及1个字母的例题。
例 2当 a=2时,求代数式 的值.
解:当 a=2时,
1. 先讲教科书第14页上的引入例,在这个涉及排球个数的代数式里,只含有一个字母。在此基础上可酌情补充一个含有两个字母的代数式的例子。
底是a厘米、高是h厘米的三角形的面积怎样表示?答:1/2ah(平方厘米)。然后,可根据这个代数式计算a,h分别取几个具体数值时的三角形的面积。
在上面例子的基础上,提出代数式的值的概念。
建议在提出代数式的值的概念后,再回到上面的例子作进一步说明。如指出当当n=15时,代数式2n+10的值是40,等等。此外,还要指出代数式与代数式的值的区别,不能笼统地说代数式的值是多少,而只能说,当字母取何值时,代数式的值是多少。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com