2.学生活动、意义建构、数学理论:
由情景问题入手,引导学生审清题意,根据等量关系:学生总数的+学生总数的+学生总数的+3=学生总数列出方程.即设毕达哥拉斯的学生有x名,由题意得x/2+x/4+x/7+3=x.
学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较.
(生:①先移项再合并同类项;②先合并同类项后移项;③两边同时乘以28,56,84……)
学生比较上述方法,判断选择,引入--去分母.
1.情景创设:
毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他:“尊敬的毕达哥拉斯,请告诉我,有多少名学生在你的学校里听你讲课?” 毕达哥拉斯回答说:“我的学生,现在有在学习数学,在学习音乐,沉默无言,此外,还有三名妇女.”算一算:毕达哥拉斯的学生有多少名?
2.重、难点:利用“去分母”将方程作变形处理.
1.学习目标:
知识与技能:知道解一元一次方程的一般步骤,能灵活运用去分母、去括号、移项、合并同类项、系数化为1等五大步骤解一元一次方程.
过程与方法:巩固方程解法,经历求解过程,能体会到解法应根据具体方程本身特点而定.
情感、态度与价值观:体会化归思想--把复杂变简单,将未知变已知的作用,体会数学的应用价值.
4.回顾反思:
(1)回顾去分母注意事项,见上面数学运用.(2)本课时蕴涵的数学思想方法主要是化归思想.解方程的过程就是通过去分母、去括号、移项、合并同类项、(未知数)系数化为1等步骤,把一个一元一次方程逐步转化为x=a的形式.这是一个等量变形的过程,也是一个化归的过程.(3)具体解方程时,可根据具体情况,有些步骤可能用不上;有些步骤可以前后顺序颠倒;有时还可以省略一些步骤,以使运算简化.
3.数学运用:
结合情景问题的解法,师生互动处理课本P123例7、例8.
反馈矫正学生出现的问题,让学生展开讨论,发现解答时出错之处.
去分母时须注意:(1)确定各分母的最小公倍数;(2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体.建议进行专项训练,如,-乘以6,8……
概括解一元一次方程一般步骤,强调变形时各步易出现错误的内容.
习题练习:见课本P124练一练1,2,3
思维拓展:见课本P124议一议-=3;又如-=1
(提示:分子、分母是小数、分数的可以首先利用分数的基本性质将其化为整数系数,然后再解方程.)
2.学生活动、意义建构、数学理论:
由情景问题入手,引导学生审清题意,根据等量关系:学生总数的+学生总数的+学生总数的+3=学生总数列出方程.即设毕达哥拉斯的学生有x名,由题意得x/2+x/4+x/7+3=x.
学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较.
(生:①先移项再合并同类项;②先合并同类项后移项;③两边同时乘以28,56,84……)
学生比较上述方法,判断选择,引入--去分母.
1.情景创设:
毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他:“尊敬的毕达哥拉斯,请告诉我,有多少名学生在你的学校里听你讲课?” 毕达哥拉斯回答说:“我的学生,现在有在学习数学,在学习音乐,沉默无言,此外,还有三名妇女.”算一算:毕达哥拉斯的学生有多少名?
2.重、难点:利用“去分母”将方程作变形处理.
1.学习目标:
知识与技能:知道解一元一次方程的一般步骤,能灵活运用去分母、去括号、移项、合并同类项、系数化为1等五大步骤解一元一次方程.
过程与方法:巩固方程解法,经历求解过程,能体会到解法应根据具体方程本身特点而定.
情感、态度与价值观:体会化归思想--把复杂变简单,将未知变已知的作用,体会数学的应用价值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com