2.在解方程时,注意巧算;注意方程两根的取舍问题.
1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.
例1、 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。为了扩大销售,增加盈利,商场决定采取适当的降价措施。经调查发现,在一定范围内,衬衫的单价每降一元,商场平均每天可多售出2件。如果商场通过销售这批衬衫每天要盈利1200元,衬衫的单价应降多少元?
例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?
(月销售利润=月销售量×销售单价-月销售成本.)
某商场从厂家以每件21元的价格购进一批商品,若每件的售价为a元,则可卖出(350-10a)件,商场计划要赚450元,则每件商品的售价为多少元?
5、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃.
(1)如果要围成面积为45平方米的花圃,AB的长是多少米?
(2)能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.
4、如图,把长AD=10cm,宽AB=8cm的矩形沿着AE对折,使D点落在BC边的F点上,求DE的长.
3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶.在涉嫌船只不改变航向和航速的前提下,问需要几小时才能追上(点B为追上时的位置)?
2、如图,在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?
1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC=6cm,动点P、Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动.经过多长时间P、Q两点之间的距离是10cm?
2、如图,在矩形ABCD中,AB=6
cm,BC=12 cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,问几秒后△PBQ的面积等于8 cm2?
解:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com