5.如图3所示,直线L1,L2,L3相交于一点,则下列答案中,全对的一组是( )
A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30
C.∠1=∠3=90°,∠2=∠4=60°; D.∠1=∠3=90°,∠2=60°,∠4=30°
4.如图2所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为( ) A.62° B.118° C.72° D.59°
3.下列说法正确的有( )
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.
A.1个 B.2个 C.3个 D.4个
2.如图1所示,三条直线AB,CD,EF相交于一点O,则∠AOE+∠DOB+∠COF等于( )
A.150° B.180° C.210° D.120°
(1) (2) (3)
1.如图所示,∠1和∠2是对顶角的图形有( )毛
A.1个 B.2个 C.3个 D.4个
2.练习:
课本P5练习.
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
5.对顶角性质.
(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.
(2)教师把说理过程,规范地板书:
在图1中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC 与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.
教师板书对顶角性质:对顶角相等.
强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.
4.概括形成邻补角、对顶角概念.
(1)师生共同定义邻补角、对顶角.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
(2)初步应用.
练习1:下列说法,你同意吗?如果错误,如何订正.
①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.
②邻补角可看成是平角被过它顶点的一条射线分成的两个角.
③邻补角是互补的两个角,互补的两个角也是邻补角?
3.学生根据观察和度量完成下表:
两直线相交 |
所形成的角 |
分类 |
位置关系 |
数量关系 |
|
||||
|
|
|
|
|
|||||
教师再提问:如果改变∠AOC的大小, 会改变它与其它角的位置关系和数量关系吗?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com