0  205299  205307  205313  205317  205323  205325  205329  205335  205337  205343  205349  205353  205355  205359  205365  205367  205373  205377  205379  205383  205385  205389  205391  205393  205394  205395  205397  205398  205399  205401  205403  205407  205409  205413  205415  205419  205425  205427  205433  205437  205439  205443  205449  205455  205457  205463  205467  205469  205475  205479  205485  205493  447090 

2.同一平面内,两条直线的位置关系

   教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.

   在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.

试题详情

1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内, 不相交的两条直线叫做平行线.

   直线a与b是平行线,记作“∥”,这里“∥”是平行符号.

 教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.

试题详情

3.教师组织学生交流并形成共识.

转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a 的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点.

试题详情

2.教师演示教具.

   顺时针转动木条b两圈,让学生思考:把a、b 想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中, 有没有直线b与c木相交的位置?

试题详情

1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?

   学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?

试题详情

2.右图,由图和已知条件,下列判断中正确的是(  )

  A.由∠1=∠6,得AB∥FG;         

B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;  

D.由∠5=∠4,得AB∥FG

试题详情

1.如图3所示,下列条件中,不能判定AB∥CD的是(  )

  A.AB∥EF,CD∥EF     B.∠5=∠A;   C.∠ABC+∠BCD=180°   D.∠2=∠3

试题详情

2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

试题详情

1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  

    (1)            (2)          (3)(

试题详情

2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.(  )

试题详情


同步练习册答案