5.课堂练习
(1)P149练习1,2
(2)根据条件确定函数的表达式:y是x的正比例函数,当x=2时,y=6,求y与x的关系式.
(3)函数y=ax+b,当x=1时,y=1;当x=2时,y= -5.
(1) 求a 、b的值.
(2) 当x=0时,求函数值y ;
(3) 当x取何值时,函数值y为0?
本课总结
求函数表达式的一般步骤:
补充作业
4.例题讲解
例1:在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的关系式,并求出所挂物体的质量为4千克时的弹簧的长度.
小结:求一次函数表达式的步骤
(1)设函数表达式y=kx+b
(2)根据已知条件列出关于k,b的方程.
(3)解方程.
(4)把求出的k,b值代回到表达式中即可.
3.想一想
(1)确定正比例函数的表达式需要几个条件?
(2)确定一次函数的表达式呢?
2.讲授新课
做一做、一盘蚊香长105cm,点然时每小时缩短10cm.
(1)写出蚊香点然后的长度y(cm)与点然时间t(h)之间的函数关系式;
(2)该盘蚊香可以使用多长时间?
1.新课导入
在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质,如果给你信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.
3.把实际问题抽象为数字问题,也能把所学知识运用于实际,让学生认识数学与人类生活的密切联系及对人类历史发展的作用.
教学重点
根据所给息确定一次函数的表达式.
教学过程
2.进一步由函数中的自变量求出相应的函数值.
1.能根据所给条件写出一次函数的关系式.
8、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费.设每户每月用水量为x米3,应缴水费y元.
(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数.
(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.
7、下列说法正确的是 ( )
A.一次函数是正比例函数 B.正比例函数是一次函数
C.正比例函数不是一次函数 D.一次函数不可能是正比例函数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com