3. 理解一元二次方程的根就是二次函数与x轴交点的横坐标.
2. 理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时函数有两个交点、一个交点和没有没有交点.
1. 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的关系.
2.你能利用a、b、c之间的某种关系判断二次函数y=ax2+bx+c的图象与x轴何时有两个交点、一个交点,何时没有交点?
1.求下列二次函数的图象与x轴交点坐标,并作草图验证.
(1)y=x2-2x;(2)y=x2-2x-3.
[例1]已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为 .
[例2]抛物线y=ax2+bx+c与x轴交于点A(-3,0),对称轴为x=-1,顶点C到x轴的距离为2,求此抛物线表达式.
[例5]有一个二次函数的图象,三位学生分别说出了它的一些特点:
甲:对称轴是直线x=4;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三点为顶点的三角形面积为3.
请写出满足上述全部特点的一个二次函数表达式 .
在同一坐标系中画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象并回答下列问题:
(1)每个图象与x轴有几个交点?
(2)一元二次方程? x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?
(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面以40m/s的速度竖直向上抛出起,小球的高度h(m)与运动时间t(s)的关系如图所示,那么
(1)h和t的关系式是什么?
(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.
5. 如图,问图中有与互补的角吗?
[小结] 这节课你学到了什么?
[课后作业]
《补充习题》 余角、补角、对顶角(1)
《随堂练123》 余角、补角、对顶角(1)
4. 一个角的补角加上,等于这个角的余角的3倍,求这个角.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com