0  205576  205584  205590  205594  205600  205602  205606  205612  205614  205620  205626  205630  205632  205636  205642  205644  205650  205654  205656  205660  205662  205666  205668  205670  205671  205672  205674  205675  205676  205678  205680  205684  205686  205690  205692  205696  205702  205704  205710  205714  205716  205720  205726  205732  205734  205740  205744  205746  205752  205756  205762  205770  447090 

3.下图中AE是△ABC的高线,作图正确的是(    )

试题详情

2.如果三角形三条高的交点是三角形的一个顶点,那么这个三角形是(    )

A.锐角三角形   B.钝角三角形   C.直角三角形   D. 以上说法都不正确

试题详情

1. 1.三角形的角平分线、高和中线均为(    )

A.直线   B.射线   C.线段     D.以上说法都不正确

试题详情

9.解:(1)5长为底边时,设腰长为,由题意,得2+5=21,∴=8

(2)5长为腰长时,设底边长为,由题意,+5×2=21,∴=11.

∵5+5<11,所以. 5的边不能为腰.

从而可得这个三角形其他两边长为都是7.

第二课时7.1.2三角形的高、中线与角平分线7.1.3三角形的稳定性

试题详情

8. 8.3、4或3.5、3.5,提示:已知的这边可能为腰即两外两边分别为3,4;当已知的这边为底边时,腰长为3.5,3.5;

试题详情

1.沿大道3,大道1,2,3组成的三角形中,任意两边之和大于第三边;2.D,提示:依据三角形的三边关系,符合条件的只有D;3.D,提示:依据三角形的三边关系即4+5>,5-4<,所以的值可能是3,5,7,但不能是9,故选D;4.B,提示:分情况讨论:若腰长为2,两腰长之和为4小于5,而三角形任意之和要大于第三边,所以这种情况不成立;若腰长为5时,两腰长之和为5+5>2,符合三角形三边关系故当腰长是5,底边为2时周长为5+5+2=12,选B;5.C,提示:.先确定四条线段中,其中三条线段为一组有几种情况,再根据三角形的三边关系判断有哪几组可组成三角形即有13、10、5,13、10、7,10、5、7但13、7、5不成立故有3组选C;6. 6个;△ABD,△ABE,△ABC,△ADE,△ADC,△AEC;7.3+1,提示:图1中4=3×1+1,图2中,7=3×2+1,图3中,10=3×3+1,……第个图形中,互不重叠的三角形共有3+1;

试题详情

9. 一个等腰三角形的周长为21,一边长为5,求其他两边长.

第一课时答案:

试题详情

8. 一个三角形中有两边相等,其周长为10,其中一边为3,则其他两边长分别为     .

试题详情

7. 如图所示,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第个图中,互不重叠的三角形共有      个(用含的代数式表示)

 

试题详情

6. 11.如图所示,图中共有     个三角形,

它们分别为         .

试题详情


同步练习册答案