0  205687  205695  205701  205705  205711  205713  205717  205723  205725  205731  205737  205741  205743  205747  205753  205755  205761  205765  205767  205771  205773  205777  205779  205781  205782  205783  205785  205786  205787  205789  205791  205795  205797  205801  205803  205807  205813  205815  205821  205825  205827  205831  205837  205843  205845  205851  205855  205857  205863  205867  205873  205881  447090 

2.下列各组图形,可经平移变换,由一个图形得到另一个图形的是(   )

试题详情

1.下列五幅图案中,⑵、⑶、⑷、⑸中的哪个图案可以由(1)图案平移得到?(   )

A.⑵;        B.⑶;      C.⑷;      D.⑸.

 

试题详情

(铃响,上课)

教师:在an这个表达式中,a是什么?n是什么?

当an作为运算时,又读作什么?

学生:a是底数,n是指数,an又读作a的n次幂。

教师:(多媒体投影出示习题)用学过的知识做下面的习题,在做题的过程中,认真观察,积极思考,互相研究,看看能发现什么。

计算:

(1) 22 × 23           (2) 54×53

(3) (-3)2 × (-3)2        (4) (2/3)2×(2/3)4

(5) (- 1/2)3 × (- 1/2)4    (6) 103×104

(7) 2m × 2n           (8)(1/7)m×(1/7)n (m,n是正整数)

(学生开始做题,互相研究、讨论,气氛热烈,教师巡视、指点,待学生充分讨论有所发现后,提问有何发现)

学生A:根据乘方的意义,可以得到:

(1) 22 × 23   =  25 

(2) 54 × 53  =57

(3) (-3)2 × (-3)2  =  (-3)5……

教师:刚才A同学说出了根据乘方的意义计算上面各题所得结果,计算是否准确?

学生:计算准确。

教师:通过刚才的计算和研究,发现什么规律性的结论了吗?

学生 B:不管底数是什么数,只要底数相同,结果就是指数相加。

教师:请你举例说明。

学生B到前边黑板上板书:

22×23=(2×2)×(2×2×2)=2×2×2×2×2=25

底数不变,指数2+3=5

教师:其他几个题是否也有这样的规律呢?特别是后两个?

学生:都有这样的规律。

教师:请以习题(7)为例再加以说明。

学生C到前边黑板上板书:

2m × 2n =(2×2×…×2×2×2)×(2×2×…×2)=(2×2×…×2)=2m+n

      m个2       n个2    (m + n)个2

底数2不变,指数m + n。

教师:大家对刚才两个同学发现的规律有无异议?

学生:没有。

教师:那么,下面大家一起来看更一般的形式:am · an(m,n都是正整数),运用刚才得到的规律如何来计算呢?(学生举手,踊跃板演)

学生D到前边黑板上板书:

am × an =(a×a×…×a×a×a)×(a×a×…×a)=(a×a×…×a)=am+n

       m个a       n个a    (m + n)个a

教师:既然规律都是相同的,能否将中间过程省略,将计算过程简化呢?

学生:能。

教师:将中间过程省略,就得到am · an =am+n(m,n 都是正整数)

在这里m,n 都是正整数,底数a 是什么数呢?

学生1:a是任何数都可以。

学生2:a必须是有理数。

学生3:a不能是0。

教师:既然大家对底数a是什么样的数意见不统一,下面大家代入一些数实验一下,然后互相交流,讨论一下。(学生纷纷代入数值实验、讨论,课堂气氛热烈)待学生讨论后:

教师:请得到结论的同学发表意见。

学生1:底数可以是任何数,但我们学的数都是有理数,所以a是任意有理数。

学生2:底数a可以是字母。

学生3:底数a可以是代数式。

教师:刚才几个同学说的很好,底数a确实可以是任何数,将来我们学的数不都是有理数,另外底数a还可以代数式。

教师:请大家思考,刚才我们一起研究的这种乘法应该叫什么乘法呢?

学生:同底数幂的乘法。

教师:刚才大家通过计算,互相研究得到的是同底数幂的乘法运算的方法,现在大家思考一下,如何用你的语言来叙述这个运算的方法呢?(学生积极思考,教师板书课题后提问)

学生1:底数不改变,指数加起来。

学生2:把底数照写,指数相加。

学生3:底数不变,指数相加.

教师:(边叙述边板书)刚才几个同学归纳的很好,同底数幂相乘,底数不变,指数相加。

教师:下面运用所学的知识来判断以下的计算是否正确,如果有错误,请改正。(投影出示判断题)

(1)a3·a2=a6         (2)b4·b4=2b4

(3)x5+x5=x10         (4)y7·y=y8

教师逐个提问学生解答。

教师:接下来,运用同底数幂的乘法来做下面的例题(投影出示例题)

例1:计算(1) (-3)7×(-3)6   (2)(1/10)3×(1/10)

(3)-x3·x5     (4)b2m·b2m+1

两名同学到前面来板演,其他同学练习,教师巡视指点,待全体同学做完,对照板演改错,强调解题中的注意问题。

教师:现在我们一起来运用本课所学的知识解决一个实际问题。(投影出示课本引例)

光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年,一年以3×107秒计算,比邻  星与地球的距离大约是多少千米?

一名同学到前面板演,其他同学练习,待学生做完后发现板演同学有错误。

教师:大家一起来看王鑫同学的板演,发现有问题的请发言。

学生李某:最后结果37.983×1012(千米)是错的,不符合科学技术法的要求。

教师:请你给他改正。

学生李某到前面改正3.7983×1013(千米)

教师:科学技术法,如何记数,怎样要求?

学生王某:把一个较大的数写成a×10n,其中1≤a<10。

教师:现在大家一起来想一想:am · an· ap等于什么?(m,n,p是正整数)(全体学生举手,要求发言)

学生高某:am · an· ap=am + n + p

教师:现在我们大家来互相考一考,请每位同学为你的同桌出三道同底数幂乘法的计算题,计算量不要太大,如果同桌出的题你全对,而你出的题同学有错,你就获胜。(同学之间互相出题,气氛热烈,效果较好)

待学生完成后,教师引导学生分析出错的原因,强调注意问题。

教师:好了,现在让我们一起来回顾一下本节课我们研究的内容,有什么收获和体会,大家一起来谈一谈。

学生1:我们学习了同底数幂的乘法,我会做同底数幂乘法的计算题。

学生2:我学会了如何进行同底数幂的乘法,底数不变,指数相加。

学生3:我们能运用同底数幂的乘法来解决实际问题。

学生4:大家一起研究、讨论、交流、学习很快乐。

学生5:同学之间互相考一考,方法很好,等于一下做了6个题,感觉还不多,愿意做,挺有意思。

教师:大家谈的都非常好!

布置作业 ,下课!

试题详情

2、了解同底数幂的乘法运算性质,并能把解决一些简单的实际问题。

试题详情

1、在一定的情境中,经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

试题详情

6. 若10m=a, 10n=b, 则10m+n等于 [ ]

A.a+b    B.ab     C.ab      D.a b

试题详情

5. n是正整数(3)2n+1+3(3)2n的值是 [ ]

  A.0    B.6×32n    C.6×32n     D.2×32n+1

试题详情

4. 计算(ab)2n(ba)(ab)m-1的结果是 [ ]

  A.(ab)2n+m       B.(ab)2n+m

  C.(ba)2n+m     D.(ba)2n+m

试题详情

3. 若a2n-1·a2n+1=a12n等于 [ ]

  A.5    B.4    C.2     D.3

试题详情

2. ym-2·ym=2的结果是 [ ]

 

试题详情


同步练习册答案