0  205694  205702  205708  205712  205718  205720  205724  205730  205732  205738  205744  205748  205750  205754  205760  205762  205768  205772  205774  205778  205780  205784  205786  205788  205789  205790  205792  205793  205794  205796  205798  205802  205804  205808  205810  205814  205820  205822  205828  205832  205834  205838  205844  205850  205852  205858  205862  205864  205870  205874  205880  205888  447090 

4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.(   )

试题详情

3.三角形的外角和与一多边形的外角和相等.(   )

试题详情

2.当多边形边数增加时.它的外角和也随着增加.(   )

试题详情

1.当多边形边数增加时,它的内角和也随着增加.(   )

试题详情

课本P90第4、5、6题.

备选题:

试题详情

引导学生总结本节课主要内容.

试题详情

课本P89练习1、2、3题.

P90第2、3题

试题详情

例1  如果一个四边形的一组对角互补,那么另一组对角有什么关系?

已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.

   分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.

  

解:如图,四边形ABCD中,∠A+∠C=180°。

∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,

∴∠B+∠D= 360°-(∠A+∠C)=180°

这就是说:如果四边形一组对角互补,那么另一组对角也互补.

   例2  如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?

已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角.

求:∠1+∠2+∠3+∠4+∠5+∠6的值.

分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6-2)×180°=720°.

这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°.

解:∵六边形的任何一个外角加上它相邻的内角和为180°.

     ∴六边形的六个外角加上各自相邻内角的总和为6×180°.

     由于六边形的内角和为(6-2)×180°=720°

     ∴它的外角和为6×180°一720°=360°

如果把六边形横成n边形.(n为不小于3的正整数)

同样也可以得到其外角和等于360°.即

多边形的外角和等于360°.

所以我们说多边形的外角和与它的边数无关.

对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.

如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.

试题详情

3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?

综上所述,你能得到多边形内角和公式吗?

设多边形的边数为n,则

n边形的内角和等于(n一2)·180°.

想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)

分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5-2)×180°=540°.

如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.

   分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.

   ∴五边形的内角和为(5-1)×180°一180°=(5-2)×180°

用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.

试题详情

2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?

试题详情


同步练习册答案